In the figure, a composite line A-B-C-D is made of three straight lines AB, BC, CD as shown in the figure. If the coordinate of point A is (5,5), find the centroid of the composite line.
Solution: At first, the composite line is divided into three parts.
Part -1 : The line AB : Let the centroid of the line be G1(X1,Y1)
length, L1 = 40 mm;
X1 = 4 + (40*cos 600)/2 = 14
Y1 = 4 + (40*sin 600)/2 = 21.32
Part -2 : The line BC : Let the centroid of the line be G2(X2,Y2)
length, L2 = 15 mm;
X2 = 4 + (40*cos 600) + 15/2 = 31.5
Y2 = 4 + (40*sin 600) = 38.64
Part -3 : The line CD : Let the centroid of the line be G3(X3,Y3)
length, L3 = 20 mm;
X3 = 4 + (40*cos 600) + 15 = 39
Y3 = 4 + (40*sin 600) - 20/2 = 28.64
If the centroid of the composite line be G (Xg,Yg)
= (L1X1 + L2X2 + L3X3)/(L1 + L2 + L3)
= (40 x 14 + 15 x 31.5 + 20 x 39)/(40 + 15 + 20)
= 24.17
= (L1Y1 + L2Y2 + L3Y3)/(L1 + L2 + L3)
= (40 x 21.32 + 15 x 38.64 + 20 x 28.64)/(40 + 15 + 20)
= 26.74
Solution: At first, the composite line is divided into three parts.
Part -1 : The line AB : Let the centroid of the line be G1(X1,Y1)
length, L1 = 40 mm;
X1 = 4 + (40*cos 600)/2 = 14
Y1 = 4 + (40*sin 600)/2 = 21.32
Part -2 : The line BC : Let the centroid of the line be G2(X2,Y2)
length, L2 = 15 mm;
X2 = 4 + (40*cos 600) + 15/2 = 31.5
Y2 = 4 + (40*sin 600) = 38.64
Part -3 : The line CD : Let the centroid of the line be G3(X3,Y3)
length, L3 = 20 mm;
X3 = 4 + (40*cos 600) + 15 = 39
Y3 = 4 + (40*sin 600) - 20/2 = 28.64
If the centroid of the composite line be G (Xg,Yg)
Xg = (∑LiXi)/(∑Li)
= (L1X1 + L2X2 + L3X3)/(L1 + L2 + L3)
= (40 x 14 + 15 x 31.5 + 20 x 39)/(40 + 15 + 20)
= 24.17
Yg = (∑LiYi)/(∑Li)
= (L1Y1 + L2Y2 + L3Y3)/(L1 + L2 + L3)
= (40 x 21.32 + 15 x 38.64 + 20 x 28.64)/(40 + 15 + 20)
= 26.74
No comments:
Post a Comment