Friday 19 August 2011

CENTROID OF A COMPOSITE LINE

In the figure, a composite line A-B-C-D is made of three straight lines AB, BC, CD as shown in the figure. If the coordinate of point A is (5,5), find the centroid of the composite line.


Solution: At first, the composite line is divided into three parts.








Part -1 : The line AB : Let the centroid of the line be G1(X1,Y1)


length, L1 = 40 mm;                  


X1 = 4 + (40*cos 600)/2 = 14  
Y1 = 4 + (40*sin 600)/2 = 21.32








Part -2 : The line BC : Let the centroid of the line be G2(X2,Y2)


length, L2 = 15 mm; 


X2 = 4 + (40*cos 600) + 15/2 = 31.5 
Y2 = 4 + (40*sin 600) = 38.64




Part -3 : The line CD : Let the centroid of the line be G3(X3,Y3)


length, L3 = 20 mm; 

X3 = 4 + (40*cos 600) + 15 = 39 
Y3 = 4 + (40*sin 600) - 20/2 = 28.64



If the centroid of the composite line be G  (Xg,Yg)

Xg = (∑LiXi)/(∑Li



    = (L1X1 + L2X2 + L3X3)/(L1 + L2 + L3)
    = (40 x 14 + 15 x 31.5 + 20 x 39)/(40 + 15 + 20) 
    = 24.17
     

Yg = (∑LiYi)/(∑Li



    = (L1Y1 + L2Y2 + L3Y3)/(L1 + L2 + L3)
    = (40 x 21.32 + 15 x 38.64 + 20 x 28.64)/(40 + 15 + 20) 
    = 26.74



No comments: