Showing posts with label eme-201. Show all posts
Showing posts with label eme-201. Show all posts

Tuesday, 17 July 2012

NEW SYLLABUS FOR MANUFACTURING SCIENCE: FIRST YEAR OF MTU FOR 2012-13

MANUFACTURING SCIENCE (EME-101/EME-201)

Unit-I 
Properties, Inspection and Testing of materials
Introduction to stress & strain
Mechanical Properties: Strength, Elasticity, Stiffness, Malleability, Ductility, Brittleness, Resilience, Toughness and Hardness.
Elementary ideas of Creep, Fatigue & Fracture
Testing of metals: Destructive testing, tensile testing, Compression test, Hardness tests, Impact test.

Unit-II
Basic Metals & Alloys: Properties and Applications
Ferrous Materials: Carbon steels, its classification based on % carbon as low, mild, medium & high carbon steel, its properties & applications.
Wrought iron, Cast iron, Alloy steels: stainless steel, tool steel.
Elementary introduction to Heat- treatment of carbon steels: Annealing, Normalizing, Quenching Tempering & case-hardening.
Non-Ferrous metals & alloys: Common uses of various non-ferrous metals & alloys and its composition such as Cu-alloys: Brass, Bronze, Al-alloys such as Duralumin.

Unit III 
Introduction to Metal Forming & Casting Process and its applications
Metal Forming: Basic metal forming operations & uses of such as: Forging, Rolling, Wire & Tube-drawing/making and Extrusion, and its products/applications, Press-work, die & punch assembly, cutting and forming, its applications, Hot-working versus cold-working.
Casting: Pattern & allowances, Moulding sands and its desirable properties, Mould making with the use of a core, Gating system, Casting defects & remedies, Cupola Furnace, Die-casting and its uses.

Unit-IV 
Introduction to Machining & Welding and its applications
Machining: Basic principles of Lathe-machine and operations performed on it, Basic description of machines and operations of Shaper, Planer, Drilling, and Milling & Grinding.
Welding: Importance & basic concepts of welding, Classification of welding processes. Gas-welding, types of flames, Electric-Arc welding, Resistance welding, Soldering & Brazing and its uses.

Unit-V 
Miscellaneous Topics
Manufacturing: Importance of Materials & Manufacturing towards Technological & Socio- Economic developments, Plant location, Plant layout – its types, Types of Production, Production versus productivity.  Miscellaneous Processes: Powder-metallurgy process & its applications, Plastic-products manufacturing, Galvanizing and Electroplating.

Monday, 19 December 2011

LOADING IN BEAMS

BEAMS & CLASSIFICATION OF BEAMS

BEAM: A beam is a structure generally a horizontal structure on rigid supports and it carries mainly vertical loads. Therefore, beams are a kind of load bearing structures.

Depending upon the types of supports beams can be classified into different catagories.

CANTI-LEVER BEAMS: 

A beam can be at stable equilibrium with a single fixed support at one end and the other end remains free, which is called as the free end while the other end is known as fixed end. This kind of beam is known as Canti lever beam. The fixed joint at the fixed end produces a horizontal, a vertical reactions and a reaction moment at the fixed end.

SIMPLE SUPPORTED BEAM: 

A beam supported as just resting freely on the walls or columns at its both ends is known as simply supported beam.

There will be two vertically upward reactions at the ends of a simply supported beam. A simply supported beam can not resist any horizontal load component.

OVER HANGING BEAM: 

A beam having its end portion or both the end portions extended in the form of a canti-lever beyond the support or supports is called as over hanging beam.

Above those beams are statically determinate. It means that those beams can be analysed applying the conditions of equilibrium. We can determine the values of the unknown reactions.

There are beams which can not be analysed applying the conditions of equilibrium of coplanar forces. These beams are also known as Statically indeterminate structures.

Those types of beams can be classified as,

Fixed beams and Continuous beams.

Fixed Beam: A beam having two fixed joints at the both ends is called fixed beam.

Continuous Beam: The beam which is at rest on more than two supports is called as continuous beam.

What are different types of supports? 

There are four types of supports,
  • (i) Simple Supports, 
  • (ii) Roller Supports, 
  • (iii) Hinged Supports 
  • (iv) Fixed Supports.





Thursday, 1 December 2011

SOLUTION OF EME-102; EQUILIBRIUM OF FORCES

EQUILIBRIUM OF FORCES IN 2D

A light string ABCDE whose extremity A is fixed, has weights W1 & W2 attached to it at B & C. It passes round a small smooth pulley at D carrying a weight of 300 N at the free end E as shown in figure. If in the equilibrium position, BC is horizontal and AB & CD make 150° and 120° with BC, find (i) Tensions in the strings and (ii) magnitudes of W1 & W2



Although ABCDE is a single string/rope but still the tensions in the string/rope will be different at different segments like in the segment AB the tensions will be T1 , but in BC segment it will be different as the weight is attached at a fixed point (point B) on the string, hence it will be T2 here and in CD it will be T3  there. As at point D the string is not attached rather passes over a smooth pulley hence the tension in DE and CD will be same ie. T3  again.







To solve for equilibrium of forces in 2D, follow these steps:


1. Draw a free body diagram: Draw a diagram of the object in question and identify all the forces acting on it. This will help you visualize the problem and identify any unknown forces or angles.

2. Break forces into components: Resolve all forces into their x- and y-components. This is done by using trigonometry to determine the horizontal and vertical components of each force.

3. Apply Newton's second law: For the object to be in equilibrium, the sum of the forces in the x-direction and the sum of the forces in the y-direction must be equal to zero. This gives you two equations to solve simultaneously.

4. Solve the equations: Solve the equations for the unknown forces or angles by using algebraic methods. This will give you the values of the unknown forces or angles required for the object to be in equilibrium.

5. Check for consistency: Check that the forces and angles you have calculated are consistent with the problem and the free body diagram. For example, make sure that the direction of the forces makes sense and that the angles are reasonable.

6. Interpret the results: Interpret the results and explain what they mean in the context of the problem. This might involve calculating the tension in a rope, the force required to lift an object, or the angle required for an object to remain stationary.


Monday, 28 November 2011

QUESTION BANKS: Analyse the following Trusses:

 Analyse the following Trusses:

(1)      A cantilever truss has been as shown in the figure. Find the value of W which will produces a force of magnitudes 15 kN  in the member AB.







(2)        A cantilever truss is loaded as shown in the figure. Find the nature and magnitudes of the forces in each link.





(3)      A cantilever truss has been as shown in the figure. Find the value of W which will produces a force of magnitudes 15 kN  in the member AB.









(4)      A truss has been loaded as shown in the figure. Find the nature and the magnitudes of the forces in the links BC, CH and GH by the methods of sections.







(5) A truss has been loaded as shown in the figure. Find the internal forces in each of the beam.









(6)      A truss has been loaded as shown in the figure. Find the forces in each member and tabulate them by any methods.




compiled by Subhankar Karmakar

more content: click the following links for more questions.

THEORETICAL QUESTIONS ON SIMPLE TRUSSES part-3

QUESTION BANK : ENGINEERING MECHANICS PART-2

QUESTION BANK : ENGINEERING MECHANICS

 

THEORETICAL QUESTIONS ON SIMPLE TRUSSES

SHORT QUESTIONS: TOPIC - TRUSS ANALYSIS

1)      What is a truss? Classify them with proper diagrams.
2)      State the differences between a perfect truss and an imperfect truss.
3)      Distinguish between a deficient truss and a redundant truss.
4)      Write the Maxwell’s Truss Equation.
5)      What are the assumptions made, while finding out the forces in the various members of a truss?
6)      What are the differences between a simply supported truss and a cantilever truss? Discuss the method of finding out reactions in both the cases.


Analyse the following Trusses:
 
(1)      Analyse the Truss by the method of Joints.
(2) Find the internal forces on the links 1, 2 and 3 by the method of Sections.
(3) Determine the magnitude and the nature of the forces in the members BC, GC and GF of the given truss.
(4)   A truss of span 10 m is loaded as shown in the figure. Find the forces in all the links by any method.






compiled by Subhankar Karmakar 

PARALLEL AXIS THEOREM AND IT'S USES IN MOI

Moment Of Inertia of an Area.
MOI or MOMENTS OF INERTIA is a physical quantity which represents the inertia or resistances shown by the body against the tendency to rotate under the action external forces on the body. It is a rotational axis dependent function as its magnitude depends upon our selection of rotational axis. Although for any axis, we can derive the expression for MOI with the help of calculus, but still it is a cumbersome process.


Now suppose we take a different issue. We know MOI of an area about its centroidal axis is easily be obtained by integral calculus, but can we find a general formula by which we can calculate MOI of an area about any axis if we know its CENTROIDAL MOI.

We shall here find that we can indeed derive an expression by which MOI of any area (A) can be calculated about any Axis, if we know its centroidal MOI and the distance of the axis from it's Centroid G.


If IGX be the centroidal moment of inertia of an area (A) about X axis, then we can calculate MOI of the Area about a parallel axis (here X axis passing through the point P) at a distance Ŷ-Y'=Y from the centroid if we know the value of IGX and Y, then IPX will be
IPX = IGX + A.Y2 where Y=Ŷ-Y'


IXX = IOX = IGX + A.Ŷ2
Where IXX is the moment of inertia of the area about the co-ordinate axis parallel to X axis and passing through origin O, hence we can say,

IXX = IOX

 IMPORTANT: The notation of Moment of Inertia

MOI of an area about an axis passing through a point B will be written as IBX



Q: Find the Centroidal Moment of Inertia of the figure given above. Each small division represents 50 mm.

To find out Centroidal MOI

Wednesday, 24 August 2011

CENTROIDS OF LINES

CENTROID OF A STRAIGHT LINE


If we take a straight line of length (L), then its midpoint will be at a distance (L/2) from either end of the line. Let us denote the centroid as the point G(Xg,Yg).

Suppose we have a straight line AB of length (L) that makes an angle θ with X axis. Let the coordinate of point A is (Xo,Yo). Let the centroid be at G(Xg,Yg), then

Xg = Xo + (Lcos θ)/2
Yg = Yo + (Lsin θ)/2


                                                                                                                                                             

     Again, suppose the coordinate of B is given instead of point A. Let it is given as B(Xi,Yi). Then, it will be                                                       

Xg = X1 - (Lcos θ)/2
Yg = Y1 - (Lsin θ)/2

For Horizontal lines θ = 0° and for Vertical lines θ = 90°




CENTROID OF A CURVED LINE

The steps to derive the centroid of a quarter circular arc of radius R. 
 
Centroid of a curved line can be derived with the help of calculus.



i) Draw the figure in a X-Y coordinate system. Let the curved line has been represented by a function θ

ii) Take an arbitrary point P(X,Y) on the curve. Join the line OP, where O is the origin of the coordinate system. Let OP has a length L and makes an angle (θ) with X axis. Therefore, we can write

                  
                                   X = Rcosθ ----- (a)
                             Y = Rsinθ ----- (b)


iii) Let another point Q, such that PQ = dL where dL is very very small. Let the angle subtended by (dL) be (dθ). So we can write

                                   dL = Rdθ ------ (c)

                             Xg = (1/L) ∫(XdL)
                                  = (1/L) ∫ Rcosθ.Rdθ
                                  = (1/L).R²  ∫ sinθ.dθ ------- (d)

                             Yg = (1/L) ∫ YdL
                                  = (1/L) ∫ Rsinθ.Rdθ
                                  = (1/L).R²  ∫ sinθ.dθ -------- (e)


CENTROID OF A QUARTER CIRCULAR ARC OF RADIUS R

Suppose we have a quarter circular arc in a co-ordinate system as shown in the figure. Total length of the arc AB = (Ï€R)/2 . We take an arbitrarily small length of the arc CD and denote it as dL.

So,
           dL = Rdθ  ------ (iii)    [ as s=Rθ ]

where R = Radius of the quarter circular arc.
Let the co-ordinate of the point D be D(x,y) where
   
               X = Rcosθ -----(iv) and
            Y = Rsinθ -----(v)

Hence   Xg = (1/L)∫x.dL  ;  here  L = (Ï€R)/2  ;        
                                           X = Rcosθ      
                                          dL = Rdθ
    

             Xg = (2/Ï€R)   0Ï€/2Rcosθ.Rdθ 

     =    (2/Ï€R) R2  0Ï€/2cosθ.dθ

 =      2R/Ï€
   
   Yg = (2/Ï€R)   0Ï€/2Rsinθ.Rdθ 
     
 =      (2/Ï€R) R2  0Ï€/2sinθ.dθ

 =      2R/Ï€


Hence, for a quarter circular arc of radius R will be G(2R/Ï€,2R/Ï€)                                                                

                                                                                      

CENTROID OF A COMPOSITE LINE


In the figure, a composite line A-B-C-D is made of three straight lines AB, BC, CD as shown in the figure.So, a composite line is consisted of several straight or curved lines.


Let a composite line is made of n number of lines, which may straight or curved lines.

STEP-ONE:

Draw the composite line and break it into n number of parts. Let the lengths of these lines are L1, L2,  L3 ........ Ln. Let the centroids of these lines are G1(X1,Y1),G2(X2,Y2), G3(X3,Y3) ........ Gn(Xn,Yn).

Calculate length (Li), and coordinates (Xi,Yi) for each and every parts.
 
Now, if the centroid of the composite line be G(Xg,Yg)

Xg = (∑LiXi)/(∑Li


    => (L1X1 + L2X2 + L3X3)/(L1 + L2 + L3)
   

Yg = (∑LiYi)/(∑Li)

    => (L1Y1 + L2Y2 + L3Y3)/(L1 + L2 + L3)
   

Friday, 19 August 2011

CENTROID OF A COMPOSITE LINE

In the figure, a composite line A-B-C-D is made of three straight lines AB, BC, CD as shown in the figure. If the coordinate of point A is (5,5), find the centroid of the composite line.


Solution: At first, the composite line is divided into three parts.








Part -1 : The line AB : Let the centroid of the line be G1(X1,Y1)


length, L1 = 40 mm;                  


X1 = 4 + (40*cos 600)/2 = 14  
Y1 = 4 + (40*sin 600)/2 = 21.32








Part -2 : The line BC : Let the centroid of the line be G2(X2,Y2)


length, L2 = 15 mm; 


X2 = 4 + (40*cos 600) + 15/2 = 31.5 
Y2 = 4 + (40*sin 600) = 38.64




Part -3 : The line CD : Let the centroid of the line be G3(X3,Y3)


length, L3 = 20 mm; 

X3 = 4 + (40*cos 600) + 15 = 39 
Y3 = 4 + (40*sin 600) - 20/2 = 28.64



If the centroid of the composite line be G  (Xg,Yg)

Xg = (∑LiXi)/(∑Li



    = (L1X1 + L2X2 + L3X3)/(L1 + L2 + L3)
    = (40 x 14 + 15 x 31.5 + 20 x 39)/(40 + 15 + 20) 
    = 24.17
     

Yg = (∑LiYi)/(∑Li



    = (L1Y1 + L2Y2 + L3Y3)/(L1 + L2 + L3)
    = (40 x 21.32 + 15 x 38.64 + 20 x 28.64)/(40 + 15 + 20) 
    = 26.74



Thursday, 26 August 2010

CENTROID OF COMPLEX GEOMETRIC FIGURES:




So in this articles, we are going to discuss the concepts of centroid for one dimensional as well as two dimensional objects. 

Let's first discuss about 1D and 2D objects, one by one, an 1D object is a line, practically a metallic rod will be considered as a linear, 1D object. Where as any thin plate of negligible thickness can be considered a 2D body. Suppose we have a thin metallic rectangular plate. If it is considered as a 2D rectangular area of b X h.

The concept of centroid has been developed on the basis of resultant of several areas. We know that an area can be represented as the cross product of two vectors, hence it is also an vector. Suppose we have an area A, in a cartesian 2D coordinate system. We just divide the area into n parts, and represent them as a1, a2, a3, ..... an.

Let the elemental areas are at a distance x1, x2, x3, ..... xn, from Y axis and y1, y2, y3, ...yn from X axis.

The total moments produced about Y axis will be equal to the summation of all the individual moments produced by n elemental areas. 


Now moment is a vector quantity and we know vectors of same kind can be added together, therefore, all the n moment vectors can be added to get a single value of Resultant Moment. 

We also know this resultant moment's position vector. Let the resultant moment passes through a point G. The point through which resultant moment passes through is called Center of the Area or Centroid.

How can we find out the point G, whose coordinates are (Xg,Yg)?

As moment of an area also obeys VARIGNON'S THEOREM OF MOMENT, then sum of all the moments produced by individual elemental areas will exactly be equal to the moment produced by the total area, i.e. the resultant of all those elemental areas. Now if all the areas are added to have the resultant area which will pass through the centroid G such that it produces a moment of XgA about Y axis and YgA about X axis.

But Varignon's theorem states us that, for a vector system, resultant vector produces the moment about a point, is exactly equal to the sum of all the moments produced by all elemental areas about the same point and in the same plane. Hence, we can write now that,

Sum(a1x1+ a2x2+ + +anxn) = AXg
we can use summation sign ∑ to represent these equations,
∑aixi = (∑ai)Xg
=> Xg = (∑aixi)/((∑ai)


Sum(a1y1+ a2y2+ + +anyn) = AYg
∑aiyi = (∑ai)Yg
=> Yg = (∑aiyi)/((∑ai)

Algorithm to find out the Centroid G(Xg, Yg) of a Complex Geometric Figure.


Step1:
Take a complex 2D figure like an Area or Lamina.


Step2:
Try to identify the basic figures whose algebraic combination produces our problem figure, whose centroid we shall find out.


Step3:
Choose a coordinate system, and make it as our frame of reference. All the distances and coordinate must be define with respect to our frame of reference.


Step4:
Compute the area (ai), coordinates of their own centroid Gi (xi, yi) for each and every elemental areas. While measuring the centroids, all the measurements will be based on according to our chosen Axes.


Step5:
If any particular area has to subtracted to get the complex figure, the area will be negative, where as any area addition will be positive area.


Step6:
If the Centroid of the complex figure be G(Xg,Yg)then,

=> Xg = (∑aixi)/((∑ai)

=> Yg = (∑aiyi)/((∑ai)


Here G1 is the centroid of the part one where G2 is the centroid of the circular area that has to be removed where as G3 is the centroid of the triangular area that has to be removed also.

If we are asked to find moment of inertia of an area, which is nothing but the "second moment of area" then we shall have to find the centroidal moment of inertia first. Then we shall transfer the Moment of Inertia to another axis ie we shall apply parallel axis theorem to transfer moment of inertia from one axis (here centroidal axis) to another parallel axis.

Monday, 9 November 2009

MULTIPLE CHOICE QUESTIONS:
sub: engg. mechanics.
Sub: Engineering Mechanics,
Sub Code: EME-202, Semester: 2nd Sem, Course: B.Tech

Q.1) The example of Statically indeterminate structures are,
a. continuous beam,
b. cantilever beam,
c. over-hanging beam,
d. both cantilever and fixed beam.

Q.2) A redundant truss is defined by the truss satisfying the equation,
a. m = 2j - 3,
b. m < 2j + 3, 
c. m > 2j - 3,
d. m > 2j + 3

Q.3) The property of a material to withstand a sudden impact or shock is called,
a. hardness 

b. ductility, 
c. toughness, 
d. elasticity of the material

Q.4) The stress generated by a dynamic loading is approximately _____ times of the stress developed by the gradually applying the same load.

Q.5) The ratio between the volumetric stress to the volumetric strain is called as
a. young's modulus
b. modulus of elasticity
c. rigidity modulus,
d. bulk modulus

Q.6) In a Cantilever beam, the maximum bending moment is induced at
a. at the free end
b. at the fixed end
c. at the mid span of the beam
d. none of the above

Q.7) The forces which meet at a point are called
a. collinear forces
b. concurrent forces
c. coplanar forces
d. parallel forces

Q.8) The coefficients of friction depends upon
a. nature of the surface
b. shape of the surface
c. area of the contact surface
d. weight of the body

Q.9) The variation of shear force due to a triangular load on simply supported beam is
a. uniform 
b. linear 
c. parabolic 
d. cubic

Q.10) A body is on the point of sliding down an inclined plane under its own weight. If the inclination of the plane is 30 degree, then the coefficient of friction between the planes will be

a. 1/√3
b. √3
c. 1
d. 0

11. A force F of 10 N is applied on a mass of 2 kg. What is the acceleration of the mass?
A. 2 m/s²
B. 5 m/s²
C. 10 m/s²
D. 20 m/s²
Answer: B

12. What is the moment of a force of 50 N applied at a distance of 2 meters from a fixed point?
A. 25 Nm
B. 50 Nm
C. 100 Nm
D. 200 Nm
Answer: C

13. A 2000 kg car traveling at 20 m/s collides with a 500 kg car traveling at 10 m/s in the opposite direction. What is the velocity of the cars after the collision?
A. 6.7 m/s
B. 10 m/s
C. 13.3 m/s
D. 16.7 m/s
Answer: A

14. A 500 N force is applied to a 100 kg object on a flat surface. What is the coefficient of static friction if the object is just about to move?
A. 0.5
B. 0.7
C. 0.8
D. 1.0
Answer: D

15. A beam of length 4 m and moment of inertia of 1000 kg/m² is supported at each end. What is the maximum load that the beam can support if it is uniformly loaded?
A. 500 N
B. 1000 N
C. 2000 N
D. 4000 N
Answer: C

16. A block of mass 2 kg is hanging from a string. What is the tension in the string if the block is stationary?
A. 19.6 N
B. 20 N
C. 29.4 N
D. 30 N
Answer: B

17. A roller coaster car of mass 500 kg is traveling at 20 m/s at the bottom of a  loop-the-loop. What is the minimum radius of the loop required for the car to remain in contact with the track?
A. 40 m
B. 50 m
C. 60 m
D. 70 m
Answer: D

18. A body of mass 10 kg is moving with a velocity of 5 m/s. What is the kinetic energy of the body?
A. 50 J
B. 100 J
C. 125 J
D. 250 J
Answer: B

19. A body of mass 5 kg is placed on an inclined plane which makes an angle of 30° with the horizontal. What is the force acting on the body parallel to the plane?
A. 4.9 N
B. 7.5 N
C. 8.7 N
D. 10 N
Answer: B

20. A force of 100 N is applied on a body of mass 20 kg. What is the work done by the force in moving the body through a distance of 5 meters?
A. 250 J
B. 500 J
C. 1000 J
D. 2000 J
Answer: B

21. What is the principle of moments?
A. The sum of the moments about any point of a system in equilibrium is zero.
B. The sum of the forces acting on a system in equilibrium is zero.
C. The sum of the torques acting on a system in equilibrium is zero.
D. The sum of the accelerations of a system in equilibrium is zero.

Answer: A

22. What is the difference between static and dynamic equilibrium?
A. In static equilibrium, there is no motion, while in dynamic equilibrium, there is motion.
B. In static equilibrium, the forces are balanced, while in dynamic equilibrium, the forces are unbalanced.
C. In static equilibrium, the sum of the forces and moments is zero, while in dynamic equilibrium, the sum of the forces and moments is not zero.
D. In static equilibrium, the sum of the forces and moments is not zero, while in dynamic equilibrium, the sum of the forces and moments is zero.

Answer: C

23. What is the moment of inertia?
A. The resistance of an object to angular acceleration.
B. The force required to rotate an object.
C. The distance between the center of mass and the axis of rotation.
D. The angular velocity of an object.

Answer: A

24.What is the difference between stress and strain?
A. Stress is the deformation per unit length, while strain is the force per unit area.
B. Stress is the force per unit area, while strain is the deformation per unit length.
C. Stress is the force applied to an object, while strain is the resulting deformation.
D. Stress is the resistance of an object to deformation, while strain is the resistance of an object to stress.

Answer: B

25. What is Hooke's Law?
A. The stress applied to an elastic material is proportional to the strain produced.
B. The strain produced in an elastic material is proportional to the stress applied.
C. The deformation produced in an elastic material is proportional to the force applied.
D. The force applied to an elastic material is proportional to the deformation produced.

Answer: A

26.What is the difference between a beam and a truss?
A. A beam is a one-dimensional structure, while a truss is a two-dimensional structure.
B. A beam is made up of several members connected at their ends, while a truss is made up of several members connected at their joints.
C. A beam is used to support loads that are perpendicular to its axis, while a truss is used to support loads that are parallel to its axis.
D. A beam is a rigid structure, while a truss is a flexible structure.

Answer: B

27. What is the difference between a force and a moment?
A. A force is a vector quantity, while a moment is a scalar quantity.
B. A force is a scalar quantity, while a moment is a vector quantity.
C. A force is a push or a pull, while a moment is a twist or a turn.
D. A force is a linear motion, while a moment is a rotational motion.

Answer: C

28. What is the center of mass?
A. The point where the weight of an object is concentrated.
B. The point where the forces acting on an object are balanced.
C. The point where the moments acting on an object are balanced.
D. The point where the acceleration of an object is zero.

Answer: A

29. What is the method used to determine the forces in a truss?
A. Method of joints
B. Method of sections
C. Both A and B
D. None of the above

Answer: C

30. In a truss, which members are in tension and which members are in compression?
A. All members are in tension.
B. All members are in compression.
C. Members with angled force vectors are in tension, and members with vertical force vectors are in compression.
D. Members with vertical force vectors are in tension, and members with angled force vectors are in compression.

Answer: C

31. What is the difference between a simple truss and a compound truss?
A. A simple truss is made up of one triangle, while a compound truss is made up of two or more triangles.
B. A simple truss is made up of straight members only, while a compound truss may have curved members.
C. A simple truss is statically determinate, while a compound truss may be statically indeterminate.
D. A simple truss is used for short spans, while a compound truss is used for long spans.

Answer: A

32.How many unknown forces are there in a simple truss?
A. 2
B. 3
C. 4
D. It depends on the number of joints in the truss.

Answer: B

33. What is the method used to analyze a truss with multiple loadings?
A. Superposition method
B. Substitution method
C. Iterative method
D. None of the above

Answer: A

34. What is the maximum number of reactions that can be present in a truss?
A. 1
B. 2
C. 3
D. 4

Answer: B

35. What is the difference between a statically determinate and a statically indeterminate truss?
A. A statically determinate truss has only one solution for the unknown forces, while a statically indeterminate truss may have more than one solution.
B. A statically determinate truss has more unknown forces than the number of equations available to solve them, while a statically indeterminate truss has fewer unknown forces than the number of equations available to solve them.
C. A statically determinate truss is easier to analyze, while a statically indeterminate truss requires more advanced techniques.
D. A statically determinate truss is always more efficient than a statically indeterminate truss.

Answer: C

36. What is the difference between a pinned support and a roller support?
A. A pinned support allows rotation but not translation, while a roller support allows translation but not rotation.
B. A pinned support allows both rotation and translation, while a roller support allows neither.
C. A pinned support is used for horizontal loads, while a roller support is used for vertical loads.
D. A pinned support is always more stable than a roller support.

Answer: A

37. What is the maximum number of members that can be present in a simple truss?
A. 2n-2, where n is the number of joints
B. 2n-3, where n is the number of joints
C. n-1, where n is the number of joints
D. n+1, where n is the number of joints

Answer: B

©subhankar_karmakar

more OBJECTIVE QUESTIONS on ENGINEERING MECHANICS