Force Effects Caused by Inertia and Accelerating Reference Frames
Inertial forces are not real forces, rather they are often called as "pseudo forces". They produce effects that feel like forces but actually arise from Newton's inertial law in a reference frame that is accelerating.
When a car accelerates forward rapidly, a person inside the car feel pushed back into their seats. When the car turns around a curve, the person feels pulled to the outside of the curve. If the car suddenly comes to a stop, the persons inside the car not wearing seatbelts fly forward, possibly hitting the windshield. The car’s occupants may feel like some force is pushing them around, but in reality there are no forces shoving them in the directions they move inside the car. They feel shoved around the car because the car is accelerating. The occupants, however, follow Newton’s first law, the inertial law, and continue their original motion, as the car accelerates.
Newton’s First Law
Also called the inertial law, Newton’s first law requires that any object with no outside forces acting on it continues to move at a constant velocity. A constant velocity is a constant speed in a straight line because in physics the velocity includes direction. Any change in an object’s velocity (increasing speed, decreasing speed, or changing direction) is called an acceleration and requires an external force to act on the object. This tendency for objects to continue to move at a constant velocity is called inertia.
Inertial Forces
Despite the name, inertial forces are not real forces. Rather they are effects caused by an object’s inertia when the object is in or on something that is accelerating, what physicists call an accelerating reference frame.
For example, consider the occupants of a car rapidly increasing its speed. They feel pushed back into their seats, but not because some force is shoving them in the chest. The only real force acting on them is the back of the car seat accelerating them forward. Because of Newton’s first law, however, these occupants have inertia that tends to keep them at rest. They feel squeezed back into the car seat because the car is accelerating forward while their inertia would tend to keep them at rest.
When the car goes around a curve, it is also accelerating because the direction of the car’s velocity is changing. The occupants’ inertia tends to keep them moving in a straight line. Hence they feel pulled sideways in the car because they experience an inertial force (or effect) caused by the car’s acceleration as it changes direction.
Flying forward into the windshield when a car stops suddenly (Always wear seatbelts!) is a similar inertial effect. The car accelerates to a stop, and the occupants continue moving forward until their seatbelts (or the windshield) exerts a stopping force on the occupants. There is no real force pushing them forward, they just continue their forward motion, as required by Newton’s first law, while the car accelerates (slowing) to a stop.
Circular Motion
To move in a circular path, an object must have a centripetal force acting on it. The centripetal force points inward towards the center of the circle. The outward centrifugal effect is the tendency of the object to continue in a straight line motion. Hence, the centrifugal effect is an example of an inertial force and is not a real force acting on an object moving in a circular path.
Inertial forces feel like forces, but they are not real forces. They are effects caused by an object’s inertia when it is in or on something that is accelerating.
D'Alembert's principle of inertial forces
D'Alembert showed that one can transform an accelerating rigid body into an equivalent static system by adding the so-called "inertial force" and "inertial torque" or moment. The inertial force must act through the center of mass and the inertial torque can act anywhere. The system can then be analyzed exactly as a static system subjected to this "inertial force and moment" and the external forces. The advantage is that, in the equivalent static system' one can take moments about any point (not just the center of mass). This often leads to simpler calculations because any force (in turn) can be eliminated from the moment equations by choosing the appropriate point about which to apply the moment equation (sum of moments = zero). Even in the course of Fundamentals of Dynamics and Kinematics of machines, this principle helps in analyzing the forces that act on a link of a mechanism when it is in motion. In textbooks of engineering dynamics this is sometimes referred to as d'Alembert's principle.
d’Alembert’s principle, alternative form of Newton’s second law of motion, stated by the 18th-century French polymath Jean le Rond d’Alembert. In effect, the principle reduces a problem in dynamics to a problem in statics. The second law states that the force F acting on a body is equal to the product of the mass m and acceleration a of the body, or F = ma; in d’Alembert’s form, the force F plus the negative of the mass m times acceleration a of the body is equal to zero: F - ma = 0. In other words, the body is in equilibrium under the action of the real force F and the fictitious force -ma. The fictitious force is also called an inertial force and a reversed effective force.
Inertial forces are not real forces, rather they are often called as "pseudo forces". They produce effects that feel like forces but actually arise from Newton's inertial law in a reference frame that is accelerating.
When a car accelerates forward rapidly, a person inside the car feel pushed back into their seats. When the car turns around a curve, the person feels pulled to the outside of the curve. If the car suddenly comes to a stop, the persons inside the car not wearing seatbelts fly forward, possibly hitting the windshield. The car’s occupants may feel like some force is pushing them around, but in reality there are no forces shoving them in the directions they move inside the car. They feel shoved around the car because the car is accelerating. The occupants, however, follow Newton’s first law, the inertial law, and continue their original motion, as the car accelerates.
Newton’s First Law
Also called the inertial law, Newton’s first law requires that any object with no outside forces acting on it continues to move at a constant velocity. A constant velocity is a constant speed in a straight line because in physics the velocity includes direction. Any change in an object’s velocity (increasing speed, decreasing speed, or changing direction) is called an acceleration and requires an external force to act on the object. This tendency for objects to continue to move at a constant velocity is called inertia.
Inertial Forces
Despite the name, inertial forces are not real forces. Rather they are effects caused by an object’s inertia when the object is in or on something that is accelerating, what physicists call an accelerating reference frame.
For example, consider the occupants of a car rapidly increasing its speed. They feel pushed back into their seats, but not because some force is shoving them in the chest. The only real force acting on them is the back of the car seat accelerating them forward. Because of Newton’s first law, however, these occupants have inertia that tends to keep them at rest. They feel squeezed back into the car seat because the car is accelerating forward while their inertia would tend to keep them at rest.
When the car goes around a curve, it is also accelerating because the direction of the car’s velocity is changing. The occupants’ inertia tends to keep them moving in a straight line. Hence they feel pulled sideways in the car because they experience an inertial force (or effect) caused by the car’s acceleration as it changes direction.
Flying forward into the windshield when a car stops suddenly (Always wear seatbelts!) is a similar inertial effect. The car accelerates to a stop, and the occupants continue moving forward until their seatbelts (or the windshield) exerts a stopping force on the occupants. There is no real force pushing them forward, they just continue their forward motion, as required by Newton’s first law, while the car accelerates (slowing) to a stop.
Circular Motion
To move in a circular path, an object must have a centripetal force acting on it. The centripetal force points inward towards the center of the circle. The outward centrifugal effect is the tendency of the object to continue in a straight line motion. Hence, the centrifugal effect is an example of an inertial force and is not a real force acting on an object moving in a circular path.
Inertial forces feel like forces, but they are not real forces. They are effects caused by an object’s inertia when it is in or on something that is accelerating.
D'Alembert's principle of inertial forces
D'Alembert showed that one can transform an accelerating rigid body into an equivalent static system by adding the so-called "inertial force" and "inertial torque" or moment. The inertial force must act through the center of mass and the inertial torque can act anywhere. The system can then be analyzed exactly as a static system subjected to this "inertial force and moment" and the external forces. The advantage is that, in the equivalent static system' one can take moments about any point (not just the center of mass). This often leads to simpler calculations because any force (in turn) can be eliminated from the moment equations by choosing the appropriate point about which to apply the moment equation (sum of moments = zero). Even in the course of Fundamentals of Dynamics and Kinematics of machines, this principle helps in analyzing the forces that act on a link of a mechanism when it is in motion. In textbooks of engineering dynamics this is sometimes referred to as d'Alembert's principle.
d’Alembert’s principle, alternative form of Newton’s second law of motion, stated by the 18th-century French polymath Jean le Rond d’Alembert. In effect, the principle reduces a problem in dynamics to a problem in statics. The second law states that the force F acting on a body is equal to the product of the mass m and acceleration a of the body, or F = ma; in d’Alembert’s form, the force F plus the negative of the mass m times acceleration a of the body is equal to zero: F - ma = 0. In other words, the body is in equilibrium under the action of the real force F and the fictitious force -ma. The fictitious force is also called an inertial force and a reversed effective force.