Q: WHAT DO YOU UNDERSTAND BY THE TERM "FORCE"? WHAT IS THE EFFECT OF FORCE ON A PARTICLE AND A RIGID BODY? EXPLAIN WITH SUITABLE EXAMPLES.
Answer:FORMAL DEFINITION:
A FORCE is that which can cause an object with mass to ACCELERATE. Force has both MAGNITUDE and DIRECTION, making it a vector quantity. According to Newton's second law, an object with constant mass will accelerate in proportion to the net force acting upon it and in INVERSE PROPORTION TO ITS MASS (M). An equivalent formulation is that the net force on an object is equal to the RATE OF CHANGE OF MOMENTUM it experiences. Forces acting on three-dimensional objects may also cause them to rotate or deform, or result in a change in pressure. The tendency of a force to cause angular acceleration about an axis is called TORQUE. Deformation and pressure are the result of stress forces within an object.EXPLANATION OF MECHANICAL FORCE AND IT'S EFFECT ON A PARTICLE:
CHANGE IN POSITION:
To know force well, first we have to understand what do we mean by Change. What does it mean when we say the position of the body has been changed? Whenever we find the state of object becomes different than that of the same object before some time say Δt, then we say that there exists a change in the state of the object. Suppose the change occurs in the position of the body. But to find the initial position of a body, we need a co-ordinate system.THE CAUSE OF CHANGE:
It has been seen that to induced a change or to make a change in the position of an object we must have to change the energy possess by the body. To transfer energy into the object we shall have to apply FORCE on the body. Therefore Force is the agency that makes a change in position of a body.THE CONCLUSION: GALILEO'S LAW OF INERTIA OR NEWTON'S FIRST LAW OF MOTION.
So, if there is no force on an object the position of the object won't change with respect to time. It means if a body at rest would remain at rest and a body at uniform motion would remain in a steady motion. This law is known as Galileo's Law of Inertia or Newton's first law of motion.- 2 DIMENSIONAL FORCE
When dealing with two-dimensional force, it is essential to use vector addition to determine the net force acting on an object. The net force is the vector sum of all the forces acting on the object. The direction of the net force is determined by the angle of the resultant force vector.
The magnitude of the net force can be calculated using the Pythagorean theorem, which states that the square of the hypotenuse of a right triangle is equal to the sum of the squares of the other two sides. In this case, the hypotenuse is the magnitude of the net force, and the other two sides are the x and y components of the net force.
- ORTHOGONAL RESOLUTION OF A FORCE
WHAT IS A FORCE SYSTEM? CAN WE CLASSIFY FORCE SYSTEMS?
ANSWER:
A force system may be defined as a system where more than one force act on the body. It means that whenever multiple forces act on a body, we term the forces as a force system. We can further classify force system into different sub-categories depending upon the nature of forces and the point of application of the forces. Almost any system of known forces can be resolved into a single force called a resultant force or simply a Resultant. The resultant is a representative force which has the same effect on the body as the group of forces it replaces. (A couple is an exception to this) It, as one single force, can represent any number of forces and is very useful when resolving multiple groups of forces. It is important to note that for any given system of forces, there is only one resultant.
Different types of force system:
- (i) COPLANAR FORCES:
- (ii) CONCURRENT FORCES:
- (iii) LIKE FORCES:
- (iv) UNLIKE FORCES:
- (v) NON COPLANAR FORCES: