Saturday 29 September 2012

FUEL USED IN IC ENGINES AND REFINERY PROCCESSES; EME-505

FUEL USED IN IC ENGINES
An article on fossil fuels

Internal Combustion Engines are the generators of the energy mainly used for transportation. Almost more than 90% of the total IC Engines run on fossil fuels or different derivatives of petroleum.

IC Engines are a kind of open cycle heat engine where heat is supplied to the engine by the combustion of working fluids thus releasing huge amount of energy due to the combustion processes of the working fluids. Combustible working fluids are called fuels.


The natural petroleum oil is the largest single source of internal combustion engine fuels. Petrol and Diesel are the most used among them. The boiling point of petrol is 30°C to 200°C and that of diesel oil is from 200°C to 375°C.


Fuels of most of the IC Engines are the derivatives of Petroleum like gasoline, diesel oil, kerosene, jet fuel etc. All of these fuels are produced during the fractional distillation of Petroleum Oil obtained from crude from oil wells.


The fuels used in the IC Engines are designed to satisfy the performance requirements of the engine system in which they are used. As a result the fuels must have certain


  • (i) physical,
  • (ii) chemical and
  • (iii) combustion properties.

Following are the some characteristics a fuel must have in order to produce the desirable output to the engine performance.
  1. A fuel must have a large energy density to be capable to release huge amount of energy during its combustion in side the combustion chamber.
  2. A fuel must posses a good combustion quality to produce large amount of energy in smooth way.
  3. A fuel must have high thermal stability or pre-ignition may occur.
  4. A fuel must show a low deposit forming tendency else gum formation and other deposit forming processes will hamper the combustion process.
  5. A fuel must be non-toxic, easy to handle and storage.
CRUDE PETROLEUM OIL:

Petroleum or often referred as "Crude Oil" is a naturally occurring inflammable mixtures of liquid and mud and it contains a complex mixture of different hydrocarbons of various molecular weights. It is mainly recovered through a process called "Oil Drilling".


Oil Wells and Gas Wells:


An oil well produces mainly crude oil with some natural gas dissolved in it. In contrast a gas well produces natural gases although it may contain heavier hydrocarbons like pentane, hexane or hepthane in gaseous state due to the extreme pressure and temperature inside the well, but at surface conditions condensation starts and forms "Natural Gas Condensate" or simply known as Condensate.




COMPOSITIONS OF CRUDE WELL:

Basically, crude well is the muddy mixtures of different hydrocarbons of different molecular weights. Alkanes, Cyclo-alkanes or napthenes, aromatics. It contains nitrogen, oxygen, sulfur and phosphorous. It may also contains metallic compounds too.


Four different types of hydrocarbon molecules appear in crude oil. The relative percentages are widely varied from oil to oil. They are:


  • i) Paraffins (alkanes,  CnH2n + 2 )
  • ii) Olefins (alkenes, CnH2n),
  • iii) Napthenes (cyclo-alkanes, CnH2n ),
  • iv) Aromatics (having benzene ring, CnH2n - 6).

It is then refined by fractional distillation in oil refinery to obtain a large number of consumer products, from petrol or gasoline, diesel to kerosene, heavy oil, fuel oil, asphalt, chemical reagents, plastics etc.

Most of the derivatives of the petroleum have been used as fuel or heating purpose. The major products of a petroleum refinery are:



  • (i) Gasoline,
  • (ii) Kerosene,
  • (iii) Diesel Oil,
  • (iv) Fuel oil,
  • (v) Heavy Oil,
  • (vi) Lubricating Oil,
  • (vii) Asphalts
INTRODUCTION: 

As the demands for gasoline, kerosene/ jet fuel and diesel oil are maximum, refineries around the world have started to convert heavy fuels and other higher hydrocarbons into gasoline, kerosene and diesel oil. To perform this, refineries have adopted several thermo-chemical processes those can convert high molecular weight hydrocarbons into lighter ones by breaking them.

GENERAL REFINERY PROCESSES:


Petroleum refining has evolved continuously in response to changing consumer demand for better and different products. The original requirement was to produce kerosene as a cheaper and better source of light than whale oil. The development of the internal combustion engine led to the production of gasoline and diesel fuels. The evolution of the airplane created an initial need for high-octane aviation gasoline and then for jet fuel, a sophisticated form of the original product, kerosene. Present-day refineries produce a variety of products including many required as feedstock for the petrochemical industry.



a) Distillation Processes:

The first refinery, opened in 1861, produced kerosene by simple atmospheric distillation. Its by-products included tar and naphtha. It was soon discovered that distilling petroleum under vacuum could produce high-quality lubricating oils. However, for the next 30 years kerosene was the product consumer wanted. Two significant events changed this situation. The invention of the electric light decreased the demand for kerosene and the invention of the internal combustion engine created a demand for diesel fuel and gasoline (naphtha). 



b) Thermal Cracking Processes:

With the advent of mass production and World War I, the number of gasoline-powered vehicles increased dramatically and the demand for gasoline grew accordingly. However, distillation processes produced only a certain amount of gasoline from crude oil. In 1913, the thermal cracking process was developed, which subjected heavy fuels to both pressure and intense heat, physically breaking the large molecules into smaller ones to produce additional gasoline and distillate fuels. Visbreaking, another form of thermal cracking, was developed in the late 1930's to produce more desirable and valuable products. 



c) Catalytic Processes:

Higher-compression gasoline engines required higher-octane gasoline with better antiknock characteristics. The introduction of catalytic cracking and polymerization processes in the mid- to late 1930's met the demand by providing improved gasoline yields and higher octane numbers.   Alkylation, another catalytic process developed in the early 1940's, produced more high-octane aviation gasoline and petrochemical feedstock for explosives and synthetic rubber. Subsequently, catalytic isomerization was developed to convert hydrocarbons to produce increased quantities of alkylation feedstock. Improved catalysts and process methods such as hydrocracking and reforming were developed throughout the 1960's to increase gasoline yields and improve antiknock characteristics. These catalytic processes also produced hydrocarbon molecules with a double bond (alkenes) and formed the basis of the modern petrochemical industry. 



d) Treatment Processes:

Throughout the history of refining, various treatment methods have been used to remove non-hydrocarbons, impurities, and other constituents that adversely affect the properties of finished products or reduce the efficiency of the conversion processes. Treating can involve chemical reaction and/or physical separation. Typical examples of treating are chemical sweetening, acid treating, clay contacting, caustic washing, hydrotreating, drying, solvent extraction, and solvent dewaxing. Sweetening compounds and acids desulfurize crude oil before processing and treat products during and after processing. 

Following the Second World War, various reforming processes improved gasoline quality and yield and produced higher-quality products. Some of these involved the use of catalysts and/or hydrogen to change molecules and remove sulfur. 



 Basics of Hydrocarbon Chemistry:

Crude oil is a mixture of hydrocarbon molecules, which are organic compounds of carbon and hydrogen atoms that may include from one to 60 carbon atoms. The properties of hydrocarbons depend on the number and arrangement of the carbon and hydrogen atoms in the molecules. The simplest hydrocarbon molecule is one carbon atom linked with four hydrogen atoms: methane. All other variations of petroleum hydrocarbons evolve from this molecule. 
 
Hydrocarbons containing up to four carbon atoms are usually gases, those with 5 to 19 carbon atoms are usually liquids and those with 20 or more are solids. The refining process uses chemicals, catalysts, heat, and pressure to separate and combine the basic types of hydrocarbon molecules naturally found in crude oil into groups of similar molecules. The refining process also rearranges their structures and bonding patterns into different hydrocarbon molecules and compounds. Therefore it is the type of hydrocarbon (paraffinic, naphthenic, or aromatic) rather than its specific chemical compounds that is significant in the refining process. 


Principal Groups of Hydrocarbon
  • Paraffins - The paraffinic series of hydrocarbon compounds found in crude oil have the general formula CnH2n+2 and can be either straight chains (normal) or branched chains (isomers) of carbon atoms. The lighter, straight chain paraffin molecules are found in gases and paraffin waxes. Examples of straight-chain molecules are methane, ethane, propane, and butane (gases containing from one to four carbon atoms), and pentane and hexane (liquids with five to six carbon atoms). The branched-chain (isomer) paraffins are usually found in heavier fractions of crude oil and have higher octane numbers than normal paraffins. These compounds are saturated hydrocarbons, with all carbon bonds satisfied, that is, the hydrocarbon chain carries the full complement of hydrogen atoms.
    • Example of simplest hydrocarbon molecule: Methane (CH4), Examples of straight chain paraffin molecule (Butane) and branched paraffin molecule (Isobutane) with same chemical formula (C4H10)


  • Aromatics - Aromatics are unsaturated ring-type (cyclic) compounds which react readily because they have carbon atoms that are deficient in hydrogen. All aromatics have at least one benzene ring (a single-ring compound characterized by three double bonds alternating with three single bonds between six carbon atoms) as part of their molecular structure. Naphthalenes are fused double-ring aromatic compounds. The most complex aromatics, polynuclears (three or more fused aromatic rings), are found in heavier fractions of crude oil.
    • Example of simple aromatic compound: Benzene (C6H6), Examples of simple double-ring aromatic compound: Naphthalene (C10H8)


  • Naphthenes - Naphthenes are saturated hydrocarbon groupings with the general formula CnH2n, arranged in the form of closed rings (cyclic) and found in all fractions of crude oil except the very lightest. Single-ring naphthenes (monocycloparaffins) with five and six carbon atoms predominate, with two-ring naphthenes (dicycloparaffins) found in the heavier ends of naphtha.
    • Example of typical single-ring naphthene: Cyclohexane (C6H12), Examples of naphthene with same chemical formula (C6H12) but different molecular structure: Methyl cyclopentane (C6H12)
Other Hydrocarbons
  • Alkenes - Alkenes are mono-olefins with the general formula CnH2n and contain only one carbon-carbon double bond in the chain. The simplest alkene is ethylene, with two carbon atoms joined by a double bond and four hydrogen atoms. Olefins are usually formed by thermal and catalytic cracking and rarely occur naturally in unprocessed crude oil.
    • Example of simples Alkene: Ethylene (C2H4), Typical Alkenes with the same chemical formula (C4H8) but different molecular structures: 1-Butene and Isobutene


  • Dienes and Alkynes - Dienes, also known as diolefins, have two carbon-carbon double bonds. The alkynes, another class of unsaturated hydrocarbons, have a carbon-carbon triple bond within the molecule. Both these series of hydrocarbons have the general formula CnH2n-2. Diolefins such as 1,2-butadiene and 1,3-butadiene, and alkynes such as acetylene,occur in C5 and lighter fractions from cracking. The olefins, diolefins, and alkynes are said to be unsaturated because they contain less than the amount of hydrogen necessary to saturate all the valences of the carbon atoms. These compounds are more reactive than paraffins or naphthenes and readily combine with other elements such as hydrogen, chlorine, and bromine.
    • Example of simplest Alkyne: Acetylene (C2H2), Typical Diolefins with the same chemical formula (C4H6) but different molecular structures: 1,2-Butadiene and 1,3-Butadiene
Non-hydrocarbons
  • Sulfur Compounds -  Sulfur may be present in crude oil as hydrogen sulfide (H2S), as sulfur compounds such as mercaptans, sulfides, disulfides, thiophenes, etc. or as elemental sulfur. Each crude oil has different amounts and types of sulfur compounds, but as a rule the proportion, stability, and complexity of the compounds are greater in heavier crude-oil fractions. Hydrogen sulfide is a primary contributor to corrosion in refinery processing units. Other corrosive substances are elemental sulfur and mercaptans. Moreover, the corrosive sulfur compounds have an obnoxious odor.  Pyrophoric iron sulfide results from the corrosive action of sulfur compounds on the iron and steel used in refinery process equipment, piping, and tanks. The combustion of petroleum products containing sulfur compounds produces undesirables such as sulfuric acid and sulfur dioxide. Catalytic hydrotreating processes such as hydrodesulfurization remove sulfur compounds from refinery product streams. Sweetening processes either remove the obnoxious sulfur compounds or convert them to odorless disulfides, as in the case of mercaptans.

  • Oxygen Compounds -  Oxygen compounds such as phenols, ketones, and carboxylic acids occur in crude oils in varying amounts. 

  • Nitrogen Compounds -  Nitrogen is found in lighter fractions of crude oil as basic compounds, and more often in heavier fractions of crude oil as nonbasic compounds that may also include trace metals such as copper, vanadium, and/or nickel. Nitrogen oxides can form in process furnaces. The decomposition of nitrogen compounds in catalytic cracking and hydrocracking processes forms ammonia and cyanides that can cause corrosion. 

  • Trace Metals -  Metals, including nickel, iron, and vanadium are often found in crude oils in small quantities and are removed during the refining process. Burning heavy fuel oils in refinery furnaces and boilers can leave deposits of vanadium oxide and nickel oxide in furnace boxes, ducts, and tubes. It is also desirable to remove trace amounts of arsenic, vanadium, and nickel prior to processing as they can poison certain catalysts. 

  • Salts -  Crude oils often contain inorganic salts such as sodium chloride, magnesium chloride, and calcium chloride in suspension or dissolved in entrained water (brine). These salts must be removed or neutralized before processing to prevent catalyst poisoning, equipment corrosion, and fouling. Salt corrosion is caused by the hydrolysis of some metal chlorides to hydrogen chloride (HCl) and the subsequent formation of hydrochloric acid when crude is heated. Hydrogen chloride may also combine with ammonia to form ammonium chloride (NH4Cl), which causes fouling and corrosion. 

  • Carbon Dioxide -  Carbon dioxide may result from the decomposition of bicarbonates present in or added to crude, or from steam used in the distillation process. 
  • Naphthenic Acids -  Some crude oils contain naphthenic (organic) acids, which may become corrosive at temperatures above 450° F when the acid value of the crude is above a certain level.
 Major Refinery Products
  • Gasoline. The most important refinery product is motor gasoline, a blend of hydrocarbons with boiling ranges from ambient temperatures to about 400 °F. The important qualities for gasoline are octane number (antiknock), volatility (starting and vapor lock), and vapor pressure (environmental control). Additives are often used to enhance performance and provide protection against oxidation and rust formation.
  • Kerosene. Kerosene is a refined middle-distillate petroleum product that finds considerable use as a jet fuel and around the world in cooking and space heating. When used as a jet fuel, some of the critical qualities are freeze point, flash point, and smoke point. Commercial jet fuel has a boiling range of about 375°-525° F, and military jet fuel 130°-550° F. Kerosene, with less-critical specifications, is used for lighting, heating, solvents, and blending into diesel fuel.
  • Liquified Petroleum Gas (LPG). LPG, which consists principally of propane and butane, is produced for use as fuel and is an intermediate material in the manufacture of petrochemicals. The important specifications for proper performance include vapor pressure and control of contaminants.
  • Distillate Fuels. Diesel fuels and domestic heating oils have boiling ranges of about 400°-700° F. The desirable qualities required for distillate fuels include controlled flash and pour points, clean burning, no deposit formation in storage tanks, and a proper diesel fuel cetane rating for good starting and combustion.
  • Residual Fuels. Many marine vessels, power plants, commercial buildings and industrial facilities use residual fuels or combinations of residual and distillate fuels for heating and processing. The two most critical specifications of residual fuels are viscosity and low sulfur content for environmental control.
  • Coke and Asphalt. Coke is almost pure carbon with a variety of uses from electrodes to charcoal briquets. Asphalt, used for roads and roofing materials, must be inert to most chemicals and weather conditions.
  • Solvents. A variety of products, whose boiling points and hydrocarbon composition are closely controlled, are produced for use as solvents. These include benzene, toluene, and xylene.
  • Petrochemicals. Many products derived from crude oil refining, such as ethylene, propylene, butylene, and isobutylene, are primarily intended for use as petrochemical feedstock in the production of plastics, synthetic fibers, synthetic rubbers, and other products.
  • Lubricants. Special refining processes produce lubricating oil base stocks. Additives such as demulsifiers, antioxidants, and viscosity improvers are blended into the base stocks to provide the characteristics required for motor oils, industrial greases, lubricants, and cutting oils. The most critical quality for lubricating-oil base stock is a high viscosity index, which provides for greater consistency under varying temperatures.
Common Refinery Chemicals
  • Leaded Gasoline Additives: Tetraethyl lead (TEL) and tetramethyl lead (TML) are additives formerly used to improve gasoline octane ratings but are no longer in common use except in aviation gasoline.
  • Oxygenates: Ethyl tertiary butyl ether (ETBE), methyl tertiary butyl ether (MTBE), tertiary amyl methyl ether (TAME), and other oxygenates improve gasoline octane ratings and reduce carbon monoxide emissions.
  • Caustics: Caustics are added to desalting water to neutralize acids and reduce corrosion. They are also added to desalted crude in order to reduce the amount of corrosive chlorides in the tower overheads. They are used in some refinery treating processes to remove contaminants from hydrocarbon streams.
  • Sulfuric Acid and Hydrofluoric Acid: Sulfuric acid and hydrofluoric acid are used primarily as catalysts in alkylation processes. Sulfuric acid is also used in some treatment processes.

    USEFUL LINKS:   
    refinery topics

Tuesday 25 September 2012

MOCK TEST OF I.C. ENGINE; EME-505


1st SESSIONAL EXAMINATION 2012-13
BRANCH – ME
SEMESTER- V
Course: B.Tech.                                                                                                                Year: 3rd
Sub: IC Engines & Compressors                                                           Subject Code: EME- 505
Maximum Marks: 30                                                                                               Time: 1.30 hrs

Section A:                                                                                                       2x6 = 12
Q.1) Answer the following question in brief                                                                                  
(a)    Explain the difference between inlet valve and inlet port.
(b)   What is cracking?
(c)    Define volumetric efficiency of an IC engine with diagram.  
(d)   What are the assumptions of a air standard cycle?
(e)    Explain the concept of indicator thermal efficiency.
(f)    What are the general refinery processes?

Section B:
Q.2) Answer any three of the following questions                                         6 x 3 = 18

(a) Compare between four stroke and two stroke IC engines.

(b)  What is compression ratio? What is its range for (i) the SI engine (ii) CI engine? What factors limit the compression ratio in each type of engine?

(c) An ideal Otto cycle has compression ratio of 8 and initial conditions are 1 bar and 15°C. Heat added during constant volume process is 1045 kJ/kg. Find:
(i)                 Maximum cycle temperature
(ii)               Air standard efficiency
(iii)             Work done per kg of air
(iv)             Heat rejected
Take: Cv = 0.7175 kJ/kg-K and γ = 1.4

(d)  A diesel engine develops 5 kW. It’s indicated thermal efficiency is 30% and mechanical efficiency 57%. Estimate the fuel consumption in (i) kg/hr, (ii) litres/hr,
(iii) Indicated specific fuel consumption, and (iv) brake specific fuel consumption.
L.C.V. of diesel oil = 42000 kJ/kg.

(e) Compare the actual cycle and its deviation from theoretical cycles in IC engines.



Monday 27 August 2012

SYLLABUS OF GATE 2013; MECHANICAL ENGINEERING


Syllabus for Mechanical Engineering (ME)


1) ENGINEERING MATHEMATICS

a) Linear Algebra : Matrix algebra, Systems of linear equations, Eigen values and eigen vectors.

b) Calculus : Functions of single variable, Limit, continuity and differentiability, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals,Stokes, Gauss and Green’s theorems.

c) Differential equations : First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.

d) Complex variables : Analytic functions, Cauchy’s integral theorem, Taylor and Laurent series.

e) Probability and Statistics : Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson,Normal and Binomial distributions.

f) Numerical Methods : Numerical solutions of linear and non-linear algebraic equations Integration bytrapezoidal and Simpson’s rule, single and multi-step methods for differential equations.


2) APPLIED MECHANICS AND DESIGN

a) Engineering Mechanics: Free body diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion, including impulse and momentum (linear and angular) and energy formulations; impact.

b) Strength of Materials: Stress and strain, stress-strain relationship and elastic constants, Mohr’s circle for plane stress and plane strain, thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Euler’s theory of columns; strain energy methods; thermal stresses.

c) Theory of Machines: Displacement,velocity and acceleration analysis of plane mechanisms; dynamic analysis of slider-crank mechanism; gear trains; flywheels.

d) Vibrations: Free and forced vibration of single degree of freedom systems; effect of damping; vibration isolation; resonance, critical speeds of shafts.

e) Design: Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints, shafts, spur gears, rolling and sliding contact bearings, brakes and clutches.


3) FLUID MECHANICS AND THERMAL SCIENCES

a) Fluid Mechanics: Fluid properties; fluid statics, manometry, buoyancy; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli’s equation; viscous flow of incompressible fluids; boundary layer; elementary turbulent flow; flow through pipes,head losses in pipes, bends etc.

b) Heat-Transfer: Modes of heat transfer; one dimensional heat conduction, resistance concept, electrical analogy, unsteady heat conduction, fins; dimensionless parameters in free and forced convective heat transfer, various correlations for heat transfer in flow over flat plates and through pipes; thermal boundary layer; effect of turbulence; radiative heattransfer, black and grey surfaces, shape factors, network analysis; heat exchanger performance, LMTD and NTU methods.

c) Thermodynamics: Zeroth, First and Second laws of thermodynamics; thermodynamic system and processes; Carnot cycle.irreversibility and availability; behaviour of ideal andreal gases, properties of pure substances, calculation of work and heat in ideal processes; analysis of thermodynamic cycles related to energy conversion.

d) Applications: Power Engineering : Steam Tables, Rankine, Brayton cycles with regeneration and reheat. I.C. Engines : air-standard Otto, Diesel cycles.

e) Refrigeration and air-conditioning: Vapour refrigeration cycle, heat pumps, gas refrigeration, Reverse Brayton cycle;

f) Moist air: psychrometric chart, basic psychrometric processes.

g) Turbo-machinery: Pelton-wheel, Francis and Kaplan turbines— impulse and reaction principles, velocity diagrams.


4) MANUFACTURING AND INDUSTRIAL ENGINEERING

a) Engineering Materials: Structure and properties of engineering materials, heat treatment, stress-strain diagrams for engineering materials.

b) Metal Casting: Design of patterns, moulds and cores; solidification and cooling; riser and gating design, design considerations.

c) Forming: Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes;principles of powder metallurgy.

d) Joining: Physics of welding, brazing and soldering; adhesive bonding; design considerations in welding.

e) Machining and Machine Tool Operations: Mechanics of machining, single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principlesof non-traditional machining processes; principles of work holding, principles of design of jigs and fixtures

f) Metrology and Inspection: Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly.

g) Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools.

h) Production Planning and Control: Forecasting models, aggregate production planning, scheduling, materials requirement planning.

i) Inventory Control: Deterministic and probabilistic models; safety stock inventory control systems.

j) Operations Research: Linear programming, simplex and duplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.

Thursday 23 August 2012

CONCEPTS OF BASIC THERMODYNAMICS


¤ Introduction:

The most of general sense of thermodynamics is the study of energy and its relationship to the properties of matter. All activities in nature involve some interaction between energy and matter. Thermodynamics is a science that governs the following:

  • (i) Energy and its transformation
  • (ii) Feasibility of a process involving transformation of energy
  • (iii) Feasibility of a process involving transfer of energy
  • (iv) Equilibrium processes

More specifically, thermodynamics deals with energy conversion, energy exchange and the direction of exchange.

¤ Areas of Application of Thermodynamics:

All natural processes are governed by the principles of thermodynamics. However, the following engineering devices are typically designed based on the principles of thermodynamics.

Automotive engines, Turbines, Compressors, Pumps, Fossil and Nuclear Power Plants, Propulsion systems for the Aircrafts, Separation and Liquefaction Plant, Refrigeration, Air-conditioning and Heating Devices.

The principles of thermodynamics are summarized in the form of a set of axioms. These axioms are known as four thermodynamic laws:

  • Zeroth law of thermodynamics,
  • First law of thermodynamics,
  • Second law of thermodynamics, and
  • Third law of thermodynamics.

The Zeroth Law deals with thermal equilibrium and provides a means for measuring temperatures.

The First Law deals with the conservation of energy and introduces the concept of internal energy.

The Second Law of thermodynamics provides with the guidelines on the conversion of internal energy of matter into work. It also introduces the concept of entropy.

The Third Law of thermodynamics defines the absolute zero of entropy. The entropy of a pure crystalline substance at absolute zero temperature is zero.


¤ Different Approaches in the Study of Thermodynamics:

There are two ways through which the subject of thermodynamics can be studied


  • Macroscopic Approach
  • Microscopic Approach


¤ Macroscopic Approach:

Consider a certain amount of gas in a cylindrical container. The volume (V) can be measured by measuring the diameter and the height of the cylinder. The pressure (P) of the gas can be measured by a pressure gauge. The temperature (T) of the gas can be measured using a thermometer. The state of the gas can be specified by the measured P, V and T . The values of these variables are space averaged characteristics of the properties of the gas under consideration. In classical thermodynamics, we often use this macroscopic approach. The macroscopic approach has the following features.

  • The structure of the matter is not considered.
  • A few variables are used to describe the state of the matter under consideration. The values of these variables are measurable following the available techniques of experimental physics.



¤ Microscopic Approach:

On the other hand, the gas can be considered as assemblage of a large number of particles each of which moves randomly with independent velocity. The state of each particle can be specified in terms of position coordinates ( xi , yi , zi ) and the momentum components ( pxi , pyi , pzi ). If we consider a gas occupying a volume of 1 cm3 at ambient temperature and pressure, the number of particles present in it is of the order of 1020. The same number of position coordinates and momentum components are needed to specify the state of the gas. The microscopic approach can be summarized as:


  • A knowledge of the molecular structure of matter under consideration is essential.
  • A large number of variables are needed for a complete specification of the state of the matter.



¤ Zeroth Law of Thermodynamics: 

This is one of the most fundamental laws of thermodynamics. It is the basis of temperature and heat transfer between two systems. Suppose we take three thermodynamic system named System A, System B and System C. Now let that system A is in thermal equilibrium with system B. By thermal equilibrium we mean that there is no heat transfer between system A and system B when they are brought in contact with each other. Now, suppose system A is in thermal equilibrium with system C too and there is no contact between system B and system C. It implies that although system B and C are isolated from each other, they will remain at thermal equilibrium to each other. It means that there will be no heat transfer between system B and C, when they are brought in contact with each other. This is called the Zeroth Law of thermodynamics.


¤ Basis of Temperature: 

When two bodies are kept at contact with each other and if there is no heat transfer between them we say that their body temperatures are same. It means that temperature is the property of a system which decides whether there will be any heat transfer between two different bodies. Heat transfer always occur from a higher temperature body to a lower temperature body. Further whenever there is any heat inflow to a body, it raises its temperature and conversely, if heat outflow occurs from a system it lowers its temperature.

Suppose we take two bodies one of which is at higher temperature than the other. Now when we bring the bodies at contact, heat will be transformed from a higher temperature body to that of lower temperature. Then what will be its effect, we may ask as a result of this heat transfer? Is this heat transfer a perpetual process? Our common life experiences tell us that it will not be the case. Although, at first heat transfer will take place, but its amount will be gradually decreased and after some time, a situation will come when there will be no heat transfer between the bodies or the bodies will come to a state of thermal equilibrium with each other. So, what is the reason for that? Can we justify the situation?

Yes, we can justify it as the hotter body releases heat to the colder body, the temperature of the hotter body decreases where as the temperature of the colder body increases and after sufficient time both the bodies will have equal temperature and a state of thermal equilibrium will be achieved.


¤ Temperature Measurement: 

We know the temperature of a body can be measured with a thermometer. How can we actually calculate the temperature of a body with the help of thermodynamics?


¤ Thermometer:

A thermometer is a temperature measuring instrument. It is made of a thin capillary glass tube, one end is closed and the other end is fitted with metallic bulb full of mercury. The mercury is in thermal equilibrium with the metallic bulb. Therefore, the temperature of the mercury is equal to the temperature of the metallic bulb. 
Mercury has a good coefficient of volume expansion and it means that as the temperature of the mercury increases, its volume increases too and as a result mercury column inside the capillary rises up. 

The capillary tube has been graduated with the help of calibrating with standard temperature sources. Therefore, the temperature of the mercury can be measured from the height of mercury column as the tube is finely graduated. 

Whenever we want to measure the temperature of a body, we kept the body in contact with the metallic bulb of the thermometer. When thermal equilibrium is established between the body and the metallic bulb of the thermoneter, the temperature of both the body will be equal again the metallic bulb is in thermal equilibrium with mercury then the temperature of the mercury will be equal to the temperature of the metallic bulb and the temperature of the object.


As we can measure the temperature of the mercury from the column height, hence we can also determine the temperature of the object as they are equal to each other.

DISCUSSION:
Microscopic basis of temperature and pressure:
Here we shall try to discuss the basis of temperature and pressure only qualitatively, without any mathematical expression. 






.....................contact me at email: subhankarkarma@gmail.com for more notes

Tuesday 21 August 2012

BASICS OF THERMODYNAMICS


Thermodynamic Systems: 


If we want to analyze movement of energy over space, then we must define the space that would be used for the observation, we would call it as a System, separated from the adjoining space that is known as "Surroundings", by a boundary that may be real or may be virtual depending upon the nature of the observation. The boundary is called as System Boundary. So, we shall now define a system properly.


A thermodynamics system refers to a three dimensional space occupied by a certain amount of matter known as ''Working Substance'', and it is the space under consideration. It must be bounded by an arbitrary surface which may be real or imaginary, may be at rest or in motion as well as it may change its size and shape. All thermodynamic systems contain three basic elements:


System boundary: The imaginary surface that bounds the system.
System volume: The volume within the imaginary surface.
The surroundings: The surroundings are everything external to the system.


So we get a space of certain volume where Energy Transfer (movement of energy) is going on, what may or may not be real, and distinct, it may be virtual (in case of flow system ), again if real boundary exists, then it may be fixed (rigid boundary like constant volume system) or may be flexible (like cylinder-piston assembly). For a certain experiment the system and surroundings together is called Universe.

The interface between the system and surroundings is called as "System boundary", which may be real and distinct in some cases where as some of them are virtual, but it may be real, solid and distinct. If the air in this room is the system, the floor, ceiling and walls constitutes real boundaries. The plane at the open doorway constitutes an imaginary boundary.



Classification of Thermodynamic Systems:

Systems can be classified as being (i) closed, (ii) open, or (iii) isolated.


(i) Closed System:

A thermodynamic system may exchange mass and energy with its surroundings. There are systems which allow only energy transfer with surroundings in the form of either heat transfer or work transfer or both heat and work transfer between a system and its surroundings. In these types of system, any sorts of mass transfer between the system and its surroundings are prohibited. These types of systems are classified as closed system. Examples of closed thermodynamic systems include a fluid being compressed by a piston inside a cylinder, a bomb calorimeter. In a closed system although energy content may vary over a period of time, but the system will always contain the same amount of matter.






(ii) Open System or Control Volume: 

An open system is a region in space defined by a boundary across which matter may flow in addition to work and heat exchange between the system and the surroundings. So, in an open system, the boundaries must have one or more opening through which mass transfer may take place in addition to work and heat transfer. Most of the engineering devices are examples of open system. Some examples are (a) a gas expanding from a container through a nozzle, (b) steam flowing through a turbine, and (c) water entering a boiler and leaving as steam. The boundary of an open system may be real or imaginary and it is called as control surface. The space inside an open system is called as control volume.





(iii) Isolated System:  

In an isolated system, there is no interaction between a system and its surroundings. Hence, the quantities of mass and energy in these types of system doesn’t change with time or we can say mass and energy remain constant in an isolated system. If there is no change in energy of a system, it indicates that there is neither any kind of heat transfer nor any kind of work transfer.  Our universe as a whole can be regarded as an isolated system.



Property, Equilibrium and State: 

A property is any measurable characteristic of a system. The common properties include: 

pressure (P)
temperature (T)
volume (V)
velocity (v)
mass (m)
enthalpy (H)
entropy (S)

Properties can be intensive or extensive. Intensive properties are those whose values are independent of the mass possessed by the system, such as pressure, temperature, and velocity. Extensive properties are those whose values are dependent of the mass possessed by the system, such as volume, enthalpy, and entropy. 

Extensive properties are denoted by uppercase letters, such as volume (V), enthalpy (H) and entropy (S). Per unit mass of extensive properties are called specific properties and denoted by lowercase letters. For example, specific volume v = V/m, specific enthalpy h = H/m and specific entropy s = S/m 


*Note that work and heat are not properties. They are dependent of the process from one state to another state.

When the properties of a system are assumed constant from point to point and there is no change over time, the system is in a thermodynamic equilibrium.

The state of a system is its condition as described by giving values to its properties at a particular instant. For example, gas is in a tank. At state 1, its mass is 2 kg, temperature is 160°C, and volume is 0.1 m3. At state 2, its mass is 1 kg, temperature is 80°C, and volume is 0.2  m3..

A system is said to be at steady state if none of its properties changes with time.


State:

It is the condition of a system as defined by the values of all its properties. It gives a complete description of the system. Any operation in which one or more properties of a system change is called a change of state.


Phase:

It is a quantity of mass that is homogeneous throughout in chemical composition and physical structure. Examples of phase are solid, liquid, vapour, gas. Phase consisting of more than one phase is known as heterogenous system, where as if it consists of only one phase, it is called as homogenous system.



Process, Path and Cycle: 

The changes that a system undergoes from one equilibrium state to another are called a process. The series of states through which a system passes during a process is called path.

In thermodynamics the concept of quasi-equilibrium processes is used. It is a sufficiently slow process that allows the system to adjust itself internally so that its properties in one part of the system do not change any faster than those at other parts.

When a system in a given initial state experiences a series of quasi-equilibrium processes and returns to the initial state, the system undergoes a cycle. For example, the piston of car engine undergoes Intake stroke, Compression stroke, Combustion stroke, Exhaust stroke and goes back to Intake again. It is a cycle.


Quasi-static Processes:

Although the processes can be restrained or unrestrained, in practical purpose we need restrained processes.
A quasi-static process is one in which,
The deviation from thermodynamic equilibrium is infinitesimal.
All states of the system passes through are equilibrium states.

In a cylinder-piston assembly, several small weights are placed on the piston as shown in the figure. If we remove a weight, the pressure on the enclosed gas will be reduced by an infinitesimal amount. If we remove these weights one by one very slowly, then the pressure on the gas will be reduced by very small amount very slowly. Every time we remove a weight, the equilibrium state will be changed to a new equilibrium state at a very slow rate, such that the system will be appeared at a static condition as the change is infinitesimally small and the rate of change is also very small. The path of the change will be a series of quasi-equilibrium states. These types of processes are known as quasi-static processes.  


Equilibrium States:

A system is said to be in an equilibrium state if its properties will not be changed without some perceivable effect in the surroundings.
Equilibrium generally requires all properties to be uniform throughout the system.
There are mechanical, thermal, phase, and chemical equilibrium.

Nature has a preferred way of directing changes. As examples, we can say,
Water flows from a higher to a lower level
Electricity flows from a higher potential to a lower one
Heat flows from a body at higher temperature to the one at a lower temperature
Momentum transfer occurs from a point of higher pressure to a lower one.
Mass transfer occurs from higher concentration to a lower one


Equilibrium state will be achieved when there will not be any change of the values of the properties of a system. Neither the system will exchange 
Heat Energy nor any Work exchange nor any kind of mass exchange with its surroundings. There are mainly three kind of Equilibrium and they are as follows.

* Thermal Equilibrium
* Mechanical Equilibrium
* Chemical Equilibrium


Thermal Equilibrium: 

When two bodies are in contact, there will be heat exchange between the bodies if and only there exists a temperature difference (ΔT) between the bodies.

Due to the temperature difference between the bodies, heat will flow from the high temperature body to the low temperature body. 

As a result of this heat transfer, the temperature of the hot body will be decreased and the temperature of the cold body will be increased.

When the temperature of both the bodies becomes equal to each others, the flow of heat stops. This equilibrium condition is known as the Thermal Equilibrium. 


Mechanical Eqiilibrium : 

If there exists a pressure gradient (ΔP) inside a system, between two systems or between a system and its surroundings, then the interface surface will experience a net force not equal to zero and due to which work transfer will happen where the system having higher pressure will do work against the lower pressure system. 

Due to this work transfer, pressure of the high pressure system will be decreased as energy has flown out of the system. On the other hand, the pressure in the low pressure system will be increased. When the pressure becomes equal in both sides, the work energy flow will be stopped and this state is known as the state of Mechanical Equilibrium.;

Chemical Equilibrium:

If there exists a chemical potential (Δμ) within the components of the system or between the system and surroundings, then there will be a spontaneous chemical reaction which will try to neutralize the chemical potential, after sometimes when the chemical potential becomes zero, the reaction stops and then there will not be any more changes in chemical properties of the system. This condition is called Chemical Equilibrium.

When a system attains thermal, mechanical and chemical equilibrium simultaneously, the state of the system is called in a "THERMODYNAMIC EQUILIBRIUM".




Sunday 12 August 2012

INTERNAL COMBUSTION ENGINE (IC ENGINE)


MECHANICAL ENGG : INTERNAL COMBUSTION ENGINE

 
fig: wankel engine
 single cylinder IC engine
IC engine


Definition:

The internal combustion engine is an engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber. In an internal combustion engine the expansion of the high temperature and pressure gases, which are produced by the combustion, directly applies force to a movable component of the engine, such as the pistons or turbine blades and by moving it over a distance, generate useful mechanical energy.

Combustion Type:
  • Intermittent Combustion:
The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar four-stroke and two-stroke piston engines, along with variants, such as the Wankel rotary engine.
  • Continuous Combustion:
A second class of internal combustion engines use continuous combustion: gas turbines, jet engines and most rocket engines, each of which are internal combustion engines on the same principle as previously described.

Uses and Applications:

Internal combustion engines are most commonly used for mobile propulsion in vehicles and portable machinery. In mobile equipment, internal combustion is advantageous since it can provide high power-to-weight ratios together with excellent fuel energy density. Generally using fossil fuel (mainly petroleum), these engines have appeared in transport in almost all vehicles (automobiles, trucks, motorcycles, boats, and in a wide variety of aircraft and locomotives).

Internal combustion engines appear in the form of gas turbines as well where a very high power is required, such as in jet aircraft, helicopters, and large ships. They are also frequently used for electric generators and by industry.

Combustion Mechanism:

All internal combustion engines depend on the exothermic chemical process of combustion: the reaction of a fuel, typically with oxygen from the air (though it is possible to inject nitrous oxide in order to do more of the same thing and gain a power boost). The combustion process typically results in the production of a great quantity of heat, as well as the production of steam and carbon dioxide and other chemicals at very high temperature; the temperature reached is determined by the chemical make up of the fuel and oxidisers.

Types of Fuels it uses:

The most common modern fuels are made up of hydrocarbons and are derived mostly from fossil fuels (petroleum). Fossil fuels include diesel fuel, gasoline and petroleum gas, and the rarer use of propane. Except for the fuel delivery components, most internal combustion engines that are designed for gasoline use can run on natural gas or liquefied petroleum gases without major modifications. Large diesels can run with air mixed with gases and a pilot diesel fuel ignition injection. Liquid and gaseous biofuels, such as ethanol and biodiesel (a form of diesel fuel that is produced from crops that yield triglycerides such as soybean oil), can also be used. Some engines with appropriate modifications can also run on hydrogen gas.

Comparison of IC Engine with Steam Engine:

a) Both IC engine and steam engine are basically heat engines used to convert heat energy into mechanical energy.

b) In IC engine, the combustion of fuel (liquid or gas) takes place inside the engine cylinder. Where as, in steam engine combustion occurs outside engine, in a boiler to raise the temperature which in turn is used in the heat engine.

c) The working temperature and pressure inside an IC engine are much higher than that of steam engine. It requires the design be robust and strong temperature and pressure resistant.

d) IC engines are mostly single acting while most of the steam engines are double acting. Hence, no need of stuffing box in IC engines.

e) IC engine produces high efficiency in the range of 35% to 40%, while steam engine can produce work with an efficiency in the range of 10% to 15%.

f) Compared to long starting procedure of a steam engine, an IC engine can be started instantenously.

Classification of IC engines:

IC engines can be classified on different characteristics basis.

a) Type of Ignition process:

i) Spark Ignition or SI engine,
ii) Compression Ignition or CI engine,
iii) Hot spot ignition engine.
b) Type of Fuel used:

i) Petrol/Gasoline engine,
ii) Diesel engine,
iii) Gas engine.
c) Number of Strokes per cycle:

i) Four stroke engine,
ii) Two stroke engine.
d) Type of Cooling system:

i) Air cooled engine,
ii) Water cooled engine,
iii) Evaporative cooling engine.
e) Cycle of Operation:

i) Otto cycle engine,
ii) Diesel cycle engine,
iii) Dual cycle engine.
f) Method of fuel injection:

i) Carburettor engine,
ii) Air injection engine,
iii) Airless or solid injection engine.
g) Arrangement of Cylinders:

i) Vertical engine,
ii) Horizontal engine,
iii) Radial engine,
iv) V engine,
v) Opposed cylinder engine,
vi) Opposed piston engine.
h) Application fields:

i) Stationary engine,
ii) Automotive engine,
iii) Marine engine,
iv) Aircraft engine,
v) Locomotive engine.
i) Valve Locations:

i) Over-head valve engine,
ii) Side valve engine.


j) Speed of the engine:

i) Slow speed engine,
ii) Medium speed engine,
iii) High speed engine.
k) Method of Governing:

i) Hit and Miss governed engine,
ii) Qualitatively governed engine,
iii) Quantatively governed engine.



TERMINOLOGY: IC ENGINE

BORE: The inside diameter of the cylinder is known as bore. It is always measured in mm. 

STROKE: The distance travelled by the piston from one of its dead center positions to the other dead center position. 

DEAD CENTERS: They correspond to the positions occupied by the piston at the end of its stroke where the center lines of the connecting rod and crank are in the same straight line. These conditions arise at two specific positions of the piston. At the start of the journey of stroke and at the end of the stroke are these two specific conditions, which are named as Top Dead Center (TDC) and Bottom Dead Center or BDC for vertical engines and IDC or Inner Dead Center and ODC or Outer Dead Center for horizontal engines. 

TDC: The top most position of the piston towards the cover end side of the cylinder of a vertical engine is called Top Dead Center or TDC. 

BDC: The lowest position of the piston towards the crank end side of the cylinder of a vertical engine is known as BDC. 

CRANK THROW/ CRANK RADIUS: The distance between the center of main shaft and center of crank pin is known as Crank Throw or Crank Radius. This distance will be equal to half the stroke length. 

PISTON DISPLACEMENT/ SWEPT VOLUME: It is the volume through which the piston sweeps for its one stroke. Swept Volume is represented by Vs and it is equal to cross-sectional area of the piston x stroke length. 

Vs = {(π x d²)/4} x stroke length (L)
∴ Vs = (π.d².L)/4
CLEARENCE VOLUME: It is the volume included between the piston and the cylinder head when it is at TDC (for vertical engines) or IDC (for horizonal engine). The piston can never enters this portion of the cylinder during its travel. Clearence volume (Vc) is generally expressed as percentage of the swept volume and is denoted by Vc. 

COMPRESSION RATIO: It is the ratio of the total cylinder volume to the clearance volume. If swept volume is (Vs) and clearance volume is (Vc) then total volume of the cylinder V = Vs + Vc and Compression Ratio will be equals to (Vs + Vc)/Vc. For petrol engine it varies from 5:1 to 9:1 and for diesel engines from 14 : 1 to 22 : 1. 

PISTON SPEED: It is the distance travelled by piston in one minute. If rpm of engine shaft is (N) and length of stroke is (L), then piston speed will be 2LN m/min. 


TERMINOLOGY:

(i) Internal combustion (IC): The internal combustion engine is an engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber. In an internal combustion engine the expansion of the high temperature and pressure gases, which are produced by the combustion, directly applies force to a movable component of the engine, such as the pistons or turbine blades and by moving it over a distance, generate useful mechanical energy.

(ii) Spark Ignition(SI): An engine in which the combustion process in each cycle is started by use of a spark plug.

(iii) Compression Ignition(CI): An engine in which the combustion process starts when the air fuel mixture self ignites due to high temperature in the combustion chamber caused by the high compression. CI engines are often called diesel engines especially in the non technical community.

(iv) Top-Dead-Center (TDC): Position of the piston when it stops at the furthest point away from the crankshaft. Top because this position is at the top of most engines (not always) and dead because the piston stops at this point. Because in some engines top-dead-center is not at the top of the engine (e.g., horizontally opposed engines, radial engines, etc.,), some sources call this position Head-End-Dead-Center (HEDC). Some sources call this position Top-Center (TC). When an occurrence in a cycle happens before TDC, it is often abbreviated bTDC or bTC. When the occurrence happens after TDC or a TC. When the piston is at TDC, the volume in the cylinder is a minimum called the clearance volume.

(v) Bottom-Dead-Center (BDC): Position of the piston when it stops at the point closest to the crankshaft. Some sources call this Crank-End-Dead-Center(CEDC) because it is not always at the bottom of the engine. Some sources call this point Bottom-Center(BC). During an engine cycle things happen before Bottom-Dead-Center, bBDC or bBC, and after bottom-deadcenter, aBDC or aBC.

(vi) Direct Injection:Fuel injection into the main combustion chamber of an engine. Engines either have one main combustion chamber (open chamber) or a divided combustion chamber made up of a main chamber and a smaller connected secondary chamber.

(vii) Indirect injection: Fuel injection into the secondary chamber of an engine with a divided combustion chamber.

(viii) Displacement volume: Volume displaced by the piston as it travels through one stroke. Displacement cans b given for one cylinder or for the entire engine (one cylinder time’s number of cylinders). Some literature calls this swept volume.

(ix) Gasoline Direct Injection (GDI): Spark ignition engine with fuel injectors mounted in combustion chambers. Gasoline fuel is injected directly into cylinders during compression stroke.

(x) Homogeneous Charge Compression Ignition (HCCI): Compression-Ignition engine operating with a homogeneous airfuel charge instead of the diffusion combustion mixture normally used in CI engines.

(xi) Smart Engine: either computer controls that regulate operating characteristics such as air fuel ratio, ignition timing, valve timing, exhaust control, intake tuning, etc.Computer inputs come from electronic, mechanical, thermal and chemical sensors located throughout the engine. Computers in some automobiles are even programmed to adjust engine operation for things like valve water and combustion chamber deposit build up as the engine ages. In automobiles, the same computers are used to make smart cars by controlling the steering, brakes, exhaust system, suspension, seats, anti-theft systems, sound-endear analysis navigation entertainment systems, shifting, doors, noise, suppression, environment, comfort,etc.(o) Engine Management System: Computer and electronics used to control smart engines.

(xii) Wide- Open throttle (WOT): Engine operated with throttle valve fully open when maximum power and/or speed is desired.

(xiii) Ignition Delay (ID): Time interval between ignition initiation and the actual start of combustion.

(r) Air Fuel Ratio: Ratio of mass air to mass of fuel input into engine.

(xiv) Fuel-Air ratio: Ratio of mass of fuel to mass of air input into engine.

(xv) Brake Maximum torque: (BMT): Speed at which maximum torque occurs.

(xvi) Overhead Valve (OHV): Valves mounted in engine head.

(xvii) Overhead Cam (OHC): Camshaft mounted in engine head, giving more direct control of valves which are also mounted in engine head.

(xviii) Fuel Injection (FI):

MAIN ENGINE COMPONENTS:

The following is the list of major components found in most reciprocating internal combustion engines.

  • Block: Body of engine containing the cylinders made of cast iron or aluminum. In many older engines the valves and the valve ports were contained in the block. The block of water cooled engines includes a water jacket cast around the cylinders. On air cooled engines the exterior surface of the block has cooling fins. 

  • Camshaft: Rotating shaft used to push open valves at the proper time in the engine cycle either directly or through mechanical or hydraulic linkage (push rods, rocker arms, and tappets). Most modern automobile engines have one or more camshafts mounted in the engine head (Overhead cam). Older engines had camshafts in the crank case. Crankshafts are generally made of forget steel or cast iron and driven off the crankshaft by means of a belt or chain (Timing chain). To reduce weight, some cams are made from a hollow shaft with the cam lobes press-fit on. In four stroke cycle engines the camshaft rotates at half engine speed.

  • Carburetor: Venturi flow device that meters the proper amount of fuel into the air flow by means of pressure
    differential. For many decades it was the basic fuel metering system on all automobile (and other) engines. It is still used on low cost small engines like lawn mowers but is uncommon on new automobiles.

  • Catalytic converter: Chamber mounted in exhaust flow containing catalytical material that promotes reduction of emission by chemical reaction.

  • Choke: Butterfly valve at carburetor intake, used to create rich fuel-air mixture in intake system for cold weather starting.

  • Combustion chamber: The end of the cylinder between the head and the piston face where the combustion occurs. The size of the combustion chamber continuously changes from a minimum volume when the piston is at TDC to a maximum when the piston is at BDC. The term cylinder is sometimes synonymous with combustion chamber (e.g., the engine was firing on all cylinders). Some engines have open combustion chambers which consist of one chamber for each cylinder.

  • Other engines have divided chambers which consist of dual chambers on each cylinder connected by an orifice passage.

  • CRANK CASE: In IC Engine terminology, Crank Case is the housing of Crank Shaft. It is the largest cavity in engine and is fixed to cylinder.