Showing posts with label FORCE. Show all posts
Showing posts with label FORCE. Show all posts

Thursday 19 July 2012

QUESTIONS BANK 5 : FORCE AND FORCE SYSTEM

(I am going to publish a question bank for EME-102/EME-202 of 1st yr. MTU; Greater Noida. Some pages from the book .......Subhankar Karmakar)
 

QUESTIONS BANK 4 : FORCE AND FORCE SYSTEM

(I am going to publish a question bank for EME-102/EME-202 of 1st yr. MTU; Greater Noida. Some pages from the book .......Subhankar Karmakar)

QUESTIONS BANK 3 : FORCE AND FORCE SYSTEM

(I am going to publish a question bank for EME-102/EME-202 of 1st yr. MTU; Greater Noida. Some pages from the book .......Subhankar Karmakar)

Thursday 12 July 2012

QUESTIONS BANK 2: FORCE AND FORCE SYSTEM

(I am going to publish a question bank for EME-102/EME-202 of 1st yr. MTU; Greater Noida. Some pages from the book .......Subhankar Karmakar)
1)      Explain the principle of Super-position.

Ans: The principle of superposition states that “The effect of a force on a body does not change and remains same if we add or subtract any system which is in equilibrium.”
In the fig 4 a, a force P is applied at point A in a beam, where as in the fig 4 b, force P is applied at point A and a force system in equilibrium which is added at point B. Principle of super position says that both will produce the same effect.


2)      What is “Force-Couple system?”

Ans: When a force is required to transfer from a point A to point B, we can transfer the force directly without changing its magnitude and direction but along with the moment of force about point B.

As a result of parallel transfer a system is obtained which is always a combination of a force and a moment or couple. This system consists of a force and a couple at a point is known as Force-Couple system.
      In fig 5 a, a force P acts on a bar at point A, now at point B we introduce a system of forces  in equilibrium (fig 5 b), hence according to principle of superposition there is no change in effect of the original system. Now we can reduce the downward force P at point A and upward force P at point B as a couple of magnitude Pxd at point B (fig 5 c).

3) What do you understand by Equivalent force systems?

Ans: Two different force systems will be equivalent if they can be reduced to the same force-couple system at a given point. So, we can say that two force systems acting on the same rigid body will be equivalent if the sums of forces or resultant and sums of the moments about a point are equal.


4)      What is orthogonal or perpendicular resolution of a force?


Ans: The resolution of a force into two components which are mutually perpendicular to each other along X-axis and Y-axis is called orthogonal resolution of a force.
If a force F acts on an object at an angle θ with the positive X-axis, then its component along X-axis is Fx = Fcosθ, and that along Y-axis is Fy = Fsinθ






5) What is oblique or non-perpendicular resolution of a force?

Ans: When a force is required to be resolved in to two directions which are not perpendiculars to each other the resolution is called oblique or Non-perpendicular resolution of a force.

   
       FOA = (P sin β)/ sin (α +β)
 FOB = (P sin α)/ sin (α +β)






Wednesday 11 July 2012

QUESTION BANK 1: FORCE AND FORCE SYSTEM

(I am going to publish a question bank for EME-102/EME-202 of 1st yr. MTU; Greater Noida. Some pages from the book .......Subhankar Karmakar)

QUESTION BANK: ENGINEERING MECHANICS

by Er. Subhankar Karmakar
Unit: 1 (Force System)

VERY SHORT QUESTIONS (2 marks):


1)      What is force and force system?

Ans: A force is a physical quantity having magnitude as well as direction. Therefore, it is a   vector quantity. It is defined as an "external agency" which produces or tends to produce or destroys or tends to destroy the motion when applied on a body.

Its unit is Newton (N) in S.I. systems and dyne in C.G.S. system.

When two or more forces act on a body or particle, it is called force system. Therefore, a force system is a collection of two or more forces.


2)      What is static equilibrium? What are the different types of static equilibrium?

Ans: A body is said to be in static equilibrium when there is no change in position as well as no rotation exist on the body. So to be in equilibrium process, there must not be any kind of motions ie there must not be any kind of translational motion as well as rotational motion.
We also know that to have a linear translational motion we need a net force acting on the object towards the direction of motion, again to induce an any kind of rotational motion, a net moment must exists acting on the body. Further it can be said that any kind of complex motion can be resolved into a translational motion coupled with a rotating motion.

“Therefore a body subjected to a force system would be at rest if and only if the net force as well as the net moment on the body is zero.”

There are three types of Static Equilibrium
1.      Stable Equilibrium
2.      Unstable Equilibrium
3.      Neutral Equilibrium


3)      What are the characteristics of a force?

Ans: A force has four (4) basic characteristics.
·         Magnitude: It is the value of the force. It is represented by the length of the arrow that we use to represent a force.
·         Direction: A force always acts along a line, which is called as the “line of action”. The arrow head we used to represent a force is the direction of that force.
·         Nature or Sense: The arrow head also represent the nature of a force. A force may be a pull or a push. If a force acts towards a particle it will be a push and if the force acts away from a point it is pull.
·         Point of Application: It is the original location of a point on a body where the force is acting. 

4)      What are the effects of a force acting on a body?

Whenever a force acts on a body or particle, it may produce some external as well as internal effects or changes.
·         A force may change the state or position of a body by inducing motion of the body. (External effect)
·         A force may change the size or shape of an object when applied on it. It may deform the body thus inducing internal effects on the body.
·         A force may induce rotational motion into a body when applied at a point other than its center of gravity.
·         A force can make a moving body into an equilibrium state at rest.

5)      What is composition and resolution of forces?

Ans: Composition of forces: Composition or compounding is the procedure to find out single resultant force of a force system
Resolution of forces: Resolution is the procedure of splitting up a single force into number of components without changing the effect of the same.

6)      What is Resultant and Equilibrant?

Ans: Resultant: The resultant of a force system is the Force which produces same effect as the combined forces of the force system would do. So if we replace all components of the force by the resultant force, then there will be no change in effect.
The Resultant of a force system is a vector addition of all the components of the force system. The magnitude as well as direction of a resultant can be measured through analytical method.

Equilibrant: Any concurrent set of forces, not in equilibrium, can be put into a state of equilibrium by a single force. This force is called the Equilibrant. It is equal in magnitude, opposite in sense and co-linear with the resultant. When this force is added to the force system, the sum of all of the forces is equal to zero.

7)      Explain the principle of Transmissibility?

Ans: The principle of transmissibility states “the point of application of a force can be transmitted anywhere along the line of action, but within the body.”

The fig 3 a shows a force F acting at a point of application A and fig 3 b, the same force F acts along the same line of action but at a different point of action at B and both are equivalent to each other.

Wednesday 23 November 2011

QUESTION BANK : ENGINEERING MECHANICS PART-2

TOPICS: NUMERICALS ON FORCE SYSTEM- UNIT-1


5) A bar of AB 12 m long rests in horizontal position on two smooth planes as shown in the figure. Find the distance X at which 100 kN is to be placed to keep the bar in equilibrium.



 
6) A light string ABCDE whose extremity A is fixed, has weights W1 & W2 attached to it at B & C. It passes round a small smooth pulley at D carrying a weight of 300 N at the free end E as shown in figure. If in the equilibrium position, BC is horizontal and AB & CD make 150° and 120° with BC, find (i) Tensions in the strings and (ii) magnitudes of W1 & W2  


 
7) Find reactions at all the contact points if weight of P is 200 N & diameter is 100 mm, where as weight of Q is 500 N and diameter is 180 mm.









 
8) Determine the force P required to begin rolling the uniform cylinder of mass (m) over the obstacle of height (h) as shown in the figure.  







 
9) A roller of weight 500 N has a radius of 120 mm and is pulled over a step of height 60 mm by a horizontal force P. Find magnitudes of P to just start the roller over the step.




 
10) Two identical rollers each of weight 100 N are supported by an inclined plane of 30° with horizontal and a vertical wall as shown in the figure. Find all the reactions at each contact point.






 
11) A smooth cylinder of radius 500 mm rests on a horizontal plane and is kept from rolling by a rope OA of 1000 mm length. A bar AB of length 1500 mm and weight 1000 N is hinged at point A and placed against the cylinder of negligible weight. Determine the tension in the rope.






 

12)      A flat belt connects pulley B, which drives a pulley A; attached to an electric motor. μs =  0.25 and μk = 0.2 between both the pulleys and the belt. If maximum allowable tension in the belt is 600 N, determine the largest torque which can be exerted by belt on pulley B.




      

13)       Two blocks of mass MA & MB are kept at equilibrium as shown in the figure. The friction between the block B & the floor is 0.35 and between the blocks is 0.3, then find the minimum force P to just move the block B.

Wednesday 20 July 2011

2D FORCE ANALYSIS : HOW TO FIND REACTIONS IN A CASE OF CONCURRENT FORCE SYSTEM ACTING ON A BODY IS IN EQUILIBRIUM

DEFINITION : CONCURRENT FORCE SYSTEM

If the lines of actions of all the forces in a force system pass through a common point, then the force system is called as Concurrent Force System. The equilibrium conditions for a concurrent force system is


ΣFx = 0 and   ΣFy = 0

 

The steps to find out reactions when a coplanar concurrent force system acting on a body in equilibrium condition :

 

 

STEP 1 :

 

(i) Draw the diagram and identify all the contact points the body makes with other bodies including ground.

(ii) Draw a tangent at each contact point with the object. These tangents are called Contact Surfaces.

(iii) Draw a perpendicular to the contact surface at each and every contact points. These perpendiculars will be the directions of reactions at each and every contact point.

(iv) Find the angles made by the reactions with respect to horizontal with the help of Geometry.

 

 

STEP 2 :

 

(i) Draw the Free Body Diagram (FBD) that consists of the external forces acting on the object. (applied forces, forces of gravity and reactions all are external forces)

(ii) Assign reactions by symbols like R1, R2 ....... and resolve all the external forces along X-axis and Y-axis.

(iii) Now add all the horizontal component forces as ΣFx and put ΣFx = 0 ---- eqn (1)

and add all the vertical component forces as ΣFy and put ΣFy = 0 --------eqn (2)

(iv) Solving these two equations we shall get values of  R1, R2.

 






















Saturday 16 July 2011

FORCE: THE CAUSE OF ANY KIND OF CHANGE IN THE UNIVERSE

                           "When a student is introduced to the concept of force for the first time, the student would understand in a better way if we define force in formal way by explaining Mechanical Force which applied on an object produces or tends to produce certain kind of motion. Similarly, it can oppose a motion and thus it can a moving body to a halt."


                             In physics, a force is any influence that causes a free body to undergo an acceleration. Force can also be described by intuitive concepts such as a push or pull that can cause an object with mass to change its velocity (which includes to begin moving from a state of rest), i.e., to accelerate, or which can cause a flexible object to deform.

                            A force has both magnitude and direction, making it a vector quantity. Newton's second law, F=ma, can be formulated to state that an object with a constant mass will accelerate in proportion to the net force acting upon and in inversely  proportional to its mass, an approximation which breaks down near the speed of light.

                             Newton's original formulation is exact, and does not break down: this version states that the net force acting upon an object is equal to the rate at which its momentum changes.


                             Related concepts to accelerating forces include thrust, increasing the velocity of the object, drag, decreasing the velocity of any object, and torque, causing changes in rotational speed about an axis.

                            Forces which do not act uniformly on all parts of a body will also cause mechanical stresses, a technical term for influences which cause deformation of matter. While mechanical stress can remain embedded in a solid object, gradually deforming it, mechanical stress in a fluid determines changes in its pressure and volume.


                Newton's first law of Motion:

                    Newton's first law of motion states that objects continue to move in a state of constant velocity unless acted upon by an external net force or resultant force.

                   This law is an extension of Galileo's insight that constant velocity was associated with a lack of net force (see a more detailed description of this below). Newton proposed that every object with mass has an innate inertia that functions as the fundamental equilibrium "natural state" in place of the Aristotelian idea of the "natural state of rest". That is, the first law contradicts the intuitive Aristotelian belief that a net force is required to keep an object moving with constant velocity. By making rest physically indistinguishable from non-zero constant velocity, Newton's first law directly connects inertia with the concept of relative velocities. Specifically, in systems where objects are moving with different velocities, it is impossible to determine which object is "in motion" and which object is "at rest". In other words, to phrase matters more technically, the laws of physics are the same in every inertial frame of reference, that is, in all frames related by a Galilean transformation.




                         For example, while traveling in a moving vehicle at a constant velocity, the laws of physics do not change from being at rest. A person can throw a ball straight up in the air and catch it as it falls down without worrying about applying a force in the direction the vehicle is moving. This is true even though another person who is observing the moving vehicle pass by also observes the ball follow a curving parabolic path in the same direction as the motion of the vehicle. It is the inertia of the ball associated with its constant velocity in the direction of the vehicle's motion that ensures the ball continues to move forward even as it is thrown up and falls back down. From the perspective of the person in the car, the vehicle and every thing inside of it is at rest: It is the outside world that is moving with a constant speed in the opposite direction. Since there is no experiment that can distinguish whether it is the vehicle that is at rest or the outside world that is at rest, the two situations are considered to be physically indistinguishable. Inertia therefore applies equally well to constant velocity motion as it does to rest.



                        The concept of inertia can be further generalized to explain the tendency of objects to continue in many different forms of constant motion, even those that are not strictly constant velocity. The rotational inertia of planet Earth is what fixes the constancy of the length of a day and the length of a year.

                        Albert Einstein extended the principle of inertia further when he explained that reference frames subject to constant acceleration, such as those free-falling toward a gravitating object, were physically equivalent to inertial reference frames. This is why, for example, astronauts experience weightlessness when in free-fall orbit around the Earth, and why Newton's Laws of Motion are more easily discernible in such environments.

                       If an astronaut places an object with mass in mid-air next to him/herself, it will remain stationary with respect to the astronaut due to its inertia. This is the same thing that would occur if the astronaut and the object were in intergalactic space with no net force of gravity acting on their shared reference frame. This principle of equivalence was one of the foundational underpinnings for the development of the general theory of relativity.



Newton's second law of Motion:

A modern statement of Newton's second law is a vector differential equation:
where p is the momentum of the system, and is the F net (vector sum) force. In equilibrium, there is zero net force by definition, but (balanced) forces may be present nevertheless. In contrast, the second law states an unbalanced force acting on an object will result in the object's momentum changing over time. 


                            By the definition of momentum,  p = mV ; where m is the mass and V is the velocity. In a system of constant mass, the use of the constant factor rule in differentiation allows the mass to move outside the derivative operator, and the equation becomes F = ma ; where m = mass of the body and a= acceleration of the body.

                           
The