EduNes Logo

Less Stress ↓

More Success ↑

EduNes means


Educational Network for Excellence and Success

EduNes Students

Saturday, 31 May 2025

Worksheet: Number System – Mixed Problems



📄 Worksheet 1: Number System – Mixed Problems

Class: 9 CBSE
Chapter: Number System
Topic: Simplification, Rational/Irrational, Rationalisation, Exponents
Total Marks: 40
Time: 60 Minutes


🔹 Section A: Multiple Choice Questions (1 mark each)

Choose the correct option and write the answer.

  1. (75)(7+5)(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5}) equals:

    • A. 2

    • B. 2\sqrt{2}

    • C. 12

    • D. 35\sqrt{35}

  2. Which of the following is a rational number?

    • A. 2\sqrt{2}

    • B. 13\frac{1}{\sqrt{3}}

    • C. 34\frac{3}{4}

    • D. π\pi

  3. (23)2=(2\sqrt{3})^2 =

    • A. 12

    • B. 6

    • C. 434\sqrt{3}

    • D. 9

  4. 163/416^{3/4} is equal to:

    • A. 4

    • B. 8

    • C. 16

    • D. 2

  5. (152)1=\left( \frac{1}{5^2} \right)^{-1} =

    • A. 5

    • B. 25

    • C. 125\frac{1}{25}

    • D. 25-25


🔹 Section B: Very Short Answer (2 marks each)

Answer in one step wherever possible.

  1. Rationalise: 13+1\frac{1}{\sqrt{3} + 1}

  2. Classify as rational or irrational: 3113 - \sqrt{11}

  3. Simplify: (5+2)2(5 + \sqrt{2})^2

  4. Represent 2\sqrt{2} geometrically on a number line. (Sketch or describe method)

  5. Find:
    a) 271/327^{1/3}
    b) 813/481^{3/4}


🔹 Section C: Short Answer Questions (3 marks each)

Show working where required.

  1. Simplify and express in simplest form:
    5+252\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}}

  2. Evaluate:
    a) (3233)÷34(3^2 \cdot 3^3) \div 3^4
    b) (23)224(2^3)^2 \cdot 2^{-4}

  3. Without actual calculation, state whether the following are rational or irrational. Justify:

    • a) 49\sqrt{49}

    • b) 27\frac{2}{\sqrt{7}}

    • c) 3+7\sqrt{3} + \sqrt{7}


🔹 Section D: Long Answer Questions (4 marks each)

Explain each step clearly.

  1. Simplify the expression:

(2+3)2(23)2(2 + \sqrt{3})^2 - (2 - \sqrt{3})^2
  1. Rationalise and simplify:

352+25+2\frac{3}{\sqrt{5} - \sqrt{2}} + \frac{2}{\sqrt{5} + \sqrt{2}}
  1. Prove that 2\sqrt{2} is irrational.
    (Use contradiction method)

  2. Evaluate:

(827)2/3\left( \frac{8}{27} \right)^{2/3}

Then use exponent laws to show:

82/3÷24/38^{2/3} \div 2^{4/3}


🔹 Section E: Challenge Question (5 marks)

This tests higher-order thinking.

  1. Rohit says that since π is defined as the ratio of circumference to diameter (C/d), it must be a rational number. Do you agree? Justify with reasoning. Then calculate an approximate value of π using a circle of radius 7 cm (Use π227\pi \approx \frac{22}{7}) and check the accuracy of this approximation.


Instructions for Students:

  • Solve each section step by step.

  • For geometry-related questions, draw figures neatly.

  • Highlight final answers.

  • Use separate sheets if necessary.

No comments: