📄 Worksheet: Number System – Mixed Problems
Class: 9 CBSE
Chapter: Number System
Topic: Simplification, Rational/Irrational, Rationalisation, Exponents
Total Marks: 40
Time: 60 Minutes
🔹 Section A: Multiple Choice Questions (1 mark each)
Choose the correct option and write the answer.
1. \( (\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5}) \) equals:
- 2
- \( \sqrt{2} \)
- 12
- \( \sqrt{35} \)
2. Which of the following is a rational number?
- \( \sqrt{2} \)
- \( \frac{1}{\sqrt{3}} \)
- \( \frac{3}{4} \)
- \( \pi \)
3. \( (2\sqrt{3})^2 = \)
- 12
- 6
- \( 4\sqrt{3} \)
- 9
4. \( 16^{3/4} \) is equal to:
- 4
- 8
- 16
- 2
5. \( \left( \frac{1}{5^2} \right)^{-1} = \)
- 5
- 25
- \( \frac{1}{25} \)
- -25
🔹 Section B: Very Short Answer (2 marks each)
Answer in one step wherever possible.
- Rationalise: \( \frac{1}{\sqrt{3} + 1} \)
- Classify as rational or irrational: \( 3 - \sqrt{11} \)
- Simplify: \( (5 + \sqrt{2})^2 \)
- Represent \( \sqrt{2} \) geometrically on a number line. (Sketch or describe method)
- Find:
- a) \( 27^{1/3} \)
- b) \( 81^{3/4} \)
🔹 Section C: Short Answer Questions (3 marks each)
- Simplify and express in simplest form: \( \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} \)
- Evaluate:
- a) \( (3^2 \cdot 3^3) \div 3^4 \)
- b) \( (2^3)^2 \cdot 2^{-4} \)
- Without actual calculation, state whether the following are rational or irrational. Justify:
- a) \( \sqrt{49} \)
- b) \( \frac{2}{\sqrt{7}} \)
- c) \( \sqrt{3} + \sqrt{7} \)
🔹 Section D: Long Answer Questions (4 marks each)
- Simplify the expression:
\( (2 + \sqrt{3})^2 - (2 - \sqrt{3})^2 \) - Rationalise and simplify:
\( \frac{3}{\sqrt{5} - \sqrt{2}} + \frac{2}{\sqrt{5} + \sqrt{2}} \) - Prove that \( \sqrt{2} \) is irrational. (Use contradiction method)
- Evaluate:
- \( \left( \frac{8}{27} \right)^{2/3} \)
- Then use exponent laws to show: \( 8^{2/3} \div 2^{4/3} \)
🔹 Section E: Challenge Question (5 marks)
18. Rohit says that since \( \pi \) is defined as the ratio of circumference to diameter (C/d), it must be a rational number. Do you agree? Justify with reasoning. Then calculate an approximate value of \( \pi \) using a circle of radius 7 cm (Use \( \pi \approx \frac{22}{7} \)) and check the accuracy of this approximation.
✅ Instructions for Students:
- Solve each section step by step.
- For geometry-related questions, draw figures neatly.
- Highlight final answers.
- Use separate sheets if necessary.
No comments:
Post a Comment