EduNes Logo

Less Stress ↓

More Success ↑

EduNes means


Educational Network for Excellence and Success

EduNes Students

Saturday, 31 May 2025

Solved Worksheet 1: Number System



Solved Worksheet: Number System – Mixed Problems

Class: 9 CBSE
Total Marks: 40 | Time: 60 Minutes


🔹 Section A: Multiple Choice Questions (1 mark each)

  1. (75)(7+5)=75=2(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5}) = 7 - 5 = \boxed{2}Answer: A

  2. Rational number: 34\boxed{\frac{3}{4}}Answer: C

  3. (23)2=4×3=12(2\sqrt{3})^2 = 4 \times 3 = \boxed{12}Answer: A

  4. 163/4=(24)3/4=23=816^{3/4} = (2^4)^{3/4} = 2^3 = \boxed{8}Answer: B

  5. (152)1=52=25\left( \frac{1}{5^2} \right)^{-1} = 5^2 = \boxed{25}Answer: B


🔹 Section B: Very Short Answer (2 marks each)

  1. Rationalise:

13+1×3131=3131=312\frac{1}{\sqrt{3} + 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1} = \frac{\sqrt{3} - 1}{3 - 1} = \boxed{\frac{\sqrt{3} - 1}{2}}
  1. 3113 - \sqrt{11}: Irrational, because 11\sqrt{11} is irrational and difference with rational number remains irrational. → \boxed{\text{Irrational}}

  2. (5+2)2=25+2×5×2+2=27+102(5 + \sqrt{2})^2 = 25 + 2 \times 5 \times \sqrt{2} + 2 = \boxed{27 + 10\sqrt{2}}

  3. Geometrical Representation of 2\sqrt{2}:
    Draw a right-angled triangle with both legs of 1 unit. The hypotenuse is 2\sqrt{2}.
    Using compass, draw an arc from origin with radius 2\sqrt{2}. The intersection point on number line is 2\boxed{\sqrt{2}}.

a) 271/3=327^{1/3} = \boxed{3}
b) 813/4=(34)3/4=33=2781^{3/4} = (3^4)^{3/4} = 3^3 = \boxed{27}


🔹 Section C: Short Answer (3 marks each)

5+252×5+25+2=(5+2)252=5+2+2103=7+2103\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} \times \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} + \sqrt{2}} = \frac{(\sqrt{5} + \sqrt{2})^2}{5 - 2} = \frac{5 + 2 + 2\sqrt{10}}{3} = \boxed{\frac{7 + 2\sqrt{10}}{3}}

a) (3233)÷34=32+34=31=3(3^2 \cdot 3^3) \div 3^4 = 3^{2+3-4} = 3^1 = \boxed{3}

b) (23)224=2624=22=4(2^3)^2 \cdot 2^{-4} = 2^{6} \cdot 2^{-4} = 2^{2} = \boxed{4}

a) 49=7\sqrt{49} = 7 → \boxed{\text{Rational}}
b) 27\frac{2}{\sqrt{7}} → Denominator irrational → \boxed{\text{Irrational}}
c) 3+7\sqrt{3} + \sqrt{7} → sum of irrationals not simplifiable → \boxed{\text{Irrational}}


🔹 Section D: Long Answer (4 marks each)

(2+3)2(23)2=[4+43+3][443+3]=7+43(743)=83(2 + \sqrt{3})^2 - (2 - \sqrt{3})^2 = [4 + 4\sqrt{3} + 3] - [4 - 4\sqrt{3} + 3] = 7 + 4\sqrt{3} - (7 - 4\sqrt{3}) = \boxed{8\sqrt{3}}
352+25+2=3(5+2)+2(52)(5)2(2)2=35+32+252252=55+23=55+23\frac{3}{\sqrt{5} - \sqrt{2}} + \frac{2}{\sqrt{5} + \sqrt{2}} \\ = \frac{3(\sqrt{5} + \sqrt{2}) + 2(\sqrt{5} - \sqrt{2})}{(\sqrt{5})^2 - (\sqrt{2})^2} \\ = \frac{3\sqrt{5} + 3\sqrt{2} + 2\sqrt{5} - 2\sqrt{2}}{5 - 2} \\ = \frac{5\sqrt{5} + \sqrt{2}}{3} = \boxed{\frac{5\sqrt{5} + \sqrt{2}}{3}}
  1. Prove 2\sqrt{2} is irrational – contradiction method:

Assume 2=pq\sqrt{2} = \frac{p}{q}, where p,qp, q are integers, gcd(p,q)=1\gcd(p, q) = 1

Squaring:
2=p2q2p2=2q22 = \frac{p^2}{q^2} \Rightarrow p^2 = 2q^2

So, p2p^2 even ⇒ pp even ⇒ p=2kp = 2k
Then: p2=4k2=2q2q2=2k2p^2 = 4k^2 = 2q^2 ⇒ q^2 = 2k^2qq also even

pp and qq both even ⇒ Contradiction to assumption that they are coprime.

2 is irrational\boxed{\sqrt{2} \text{ is irrational}}

a)

(827)2/3=82/3272/3=(23)2/3(33)2/3=2232=4949\left( \frac{8}{27} \right)^{2/3} = \frac{8^{2/3}}{27^{2/3}} = \frac{(2^3)^{2/3}}{(3^3)^{2/3}} = \frac{2^2}{3^2} = \frac{4}{9} \Rightarrow \boxed{\frac{4}{9}}

b)

82/3÷24/3=(23)2/3÷24/3=22÷24/3=224/3=22/3=22/38^{2/3} \div 2^{4/3} = (2^3)^{2/3} \div 2^{4/3} = 2^2 \div 2^{4/3} = 2^{2 - 4/3} = 2^{2/3} = \boxed{2^{2/3}}


🔹 Section E: Challenge Question (5 marks)

Rohit's statement:
“Ï€ is defined as the ratio of circumference to diameter ⇒ it must be rational” is incorrect.

Explanation:

  • Though Ï€=Cd\pi = \frac{C}{d}, both circumference and diameter are real numbers.

  • The ratio is not always rational.

  • Ï€ has a non-terminating, non-repeating decimal expansion, and cannot be expressed as a fraction ⇒ Irrational.

Approximation Check:

Radius r=7 cmr = 7 \text{ cm}
Circumference C=2Ï€r2×227×7=44 cmC = 2\pi r \approx 2 \times \frac{22}{7} \times 7 = 44 \text{ cm}

True value using π3.1416\pi \approx 3.1416:
C=2×3.1416×7=43.982444 cmC = 2 \times 3.1416 \times 7 = 43.9824 \approx 44 \text{ cm}

Hence, 227\frac{22}{7} is a very good rational approximation of π, but π itself remains irrational.


Would you like a print-ready PDF version of this worksheet + solution set with your name/school/brand/logo at the top?

No comments: