EduNes Logo

Less Stress ↓

More Success ↑

EduNes means


Educational Network for Excellence and Success

EduNes Students

Friday, 30 May 2025

Lecture 4: Converting Recurring Decimals to Rational Numbers



📘 Class 9 – CBSE Mathematics


Chapter 1: Number System

Lecture 4: Converting Recurring Decimals to Rational Numbers + Exercise 1.3


🔹 Examples: Converting Recurring Decimals to Rational Numbers


Example 7

Convert: 0.3333=0.30.3333\ldots = 0.\overline{3}

Let x=0.3333x = 0.3333\ldots

Multiply both sides by 10:

10x=3.333310x = 3.3333\ldots

Now subtract:

10xx=3.33330.3333=39x=3x=1310x - x = 3.3333\ldots - 0.3333\ldots = 3 \Rightarrow 9x = 3 \Rightarrow x = \frac{1}{3}


Example 8

Convert: 1.272727=1.271.272727\ldots = 1.\overline{27}

Let x=1.272727x = 1.272727\ldots

Multiply both sides by 100 (since 2 digits repeat):

100x=127.272727100x = 127.272727\ldots

Now subtract:

100xx=127.27271.2727=12699x=126x=12699=1411100x - x = 127.2727\ldots - 1.2727\ldots = 126 \Rightarrow 99x = 126 \Rightarrow x = \frac{126}{99} = \frac{14}{11}


Example 9

Convert: 0.2353535=0.2350.2353535\ldots = 0.2\overline{35}

Let x=0.2353535x = 0.2353535\ldots

Multiply by 100:

100x=23.535353100x = 23.535353\ldots

Now subtract:

100xx=23.53530.2353=23.399x=23.3=23310x=233990100x - x = 23.5353\ldots - 0.2353\ldots = 23.3 \Rightarrow 99x = 23.3 = \frac{233}{10} \Rightarrow x = \frac{233}{990}


📝 Exercise 1.3 – Solved


Q1. Convert to decimal form and classify the decimal expansion

Fraction Decimal Type
(i) 36/100 0.36 Terminating
(ii) 1/11 0.\overline{09} Non-terminating recurring
(iii) 4/8 0.5 Terminating
(iv) 3/13 0.\overline{230769} Non-terminating recurring
(v) 2/11 0.\overline{18} Non-terminating recurring
(vi) 329/400 0.8225 Terminating


Q2. Predict the decimal expansions:

Given:
17=0.142857\frac{1}{7} = 0.\overline{142857}

Use cyclic patterns:

  • 27=0.285714\frac{2}{7} = 0.\overline{285714}

  • 37=0.428571\frac{3}{7} = 0.\overline{428571}

  • 47=0.571428\frac{4}{7} = 0.\overline{571428}

  • 57=0.714285\frac{5}{7} = 0.\overline{714285}

  • 67=0.857142\frac{6}{7} = 0.\overline{857142}

📌 These are cyclic permutations of the digits in 17\frac{1}{7}.


Q3. Express in the form pq\frac{p}{q}:

(i) 0.6=610=350.6 = \frac{6}{10} = \frac{3}{5}
(ii) 0.47=471000.47 = \frac{47}{100}
(iii) 0.001=110000.001 = \frac{1}{1000}


Q4. Express 0.999990.99999\ldots in the form pq\frac{p}{q}

Let x=0.99999x = 0.99999\ldots
Then 10x=9.9999910x = 9.99999\ldots
Subtract: 10xx=99x=9x=110x - x = 9 \Rightarrow 9x = 9 \Rightarrow x = 1

✅ So, 0.99999=10.99999\ldots = 1


Q5. Repeating block length in 17\frac{1}{7}

Do long division:
17=0.142857\frac{1}{7} = 0.\overline{142857}

🔹 Number of digits in the repeating block = 6


Q6. Property of q for rational number pq\frac{p}{q} to be terminating

Decimal of pq\frac{p}{q} terminates iff q (in lowest terms) has no prime factor other than 2 or 5.

✅ Example:

  • 18=0.125\frac{1}{8} = 0.125: q = 8 = 232^3

  • 16=0.16666...\frac{1}{6} = 0.16666...: q = 6 = 2×32 \times 3 → Not terminating


Q7. Three numbers with non-terminating, non-recurring decimals:

  • π = 3.1415926535...

  • √2 = 1.41421356...

  • e = 2.718281828...


Q8. Three irrational numbers between 57\frac{5}{7} and 911\frac{9}{11}:

Convert bounds to decimal:

  • 570.714\frac{5}{7} ≈ 0.714

  • 9110.818\frac{9}{11} ≈ 0.818

Now pick irrational numbers in between:

  • 0.718281828... (e/4)

  • 0.75√2

  • 0.8π/3


Q9. Classify as rational or irrational

Number Type
(i) 23\sqrt{23} Irrational
(ii) 225=15\sqrt{225} = 15 Rational
(iii) 0.3796 Rational
(iv) 7.478478... Rational
(v) 1.10100100010000... Irrational


Would you like me to create a printable worksheet and answer key for this exercise?

No comments: