EduNes Logo

Less Stress ↓

More Success ↑

EduNes means


Educational Network for Excellence and Success

EduNes Students

Saturday, 31 May 2025

Worksheet: Number System – Mixed Problems



📄 Worksheet 1: Number System – Mixed Problems

Class: 9 CBSE
Chapter: Number System
Topic: Simplification, Rational/Irrational, Rationalisation, Exponents
Total Marks: 40
Time: 60 Minutes


🔹 Section A: Multiple Choice Questions (1 mark each)

Choose the correct option and write the answer.

  1. (75)(7+5)(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5}) equals:

    • A. 2

    • B. 2\sqrt{2}

    • C. 12

    • D. 35\sqrt{35}

  2. Which of the following is a rational number?

    • A. 2\sqrt{2}

    • B. 13\frac{1}{\sqrt{3}}

    • C. 34\frac{3}{4}

    • D. π\pi

  3. (23)2=(2\sqrt{3})^2 =

    • A. 12

    • B. 6

    • C. 434\sqrt{3}

    • D. 9

  4. 163/416^{3/4} is equal to:

    • A. 4

    • B. 8

    • C. 16

    • D. 2

  5. (152)1=\left( \frac{1}{5^2} \right)^{-1} =

    • A. 5

    • B. 25

    • C. 125\frac{1}{25}

    • D. 25-25


🔹 Section B: Very Short Answer (2 marks each)

Answer in one step wherever possible.

  1. Rationalise: 13+1\frac{1}{\sqrt{3} + 1}

  2. Classify as rational or irrational: 3113 - \sqrt{11}

  3. Simplify: (5+2)2(5 + \sqrt{2})^2

  4. Represent 2\sqrt{2} geometrically on a number line. (Sketch or describe method)

  5. Find:
    a) 271/327^{1/3}
    b) 813/481^{3/4}


🔹 Section C: Short Answer Questions (3 marks each)

Show working where required.

  1. Simplify and express in simplest form:
    5+252\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}}

  2. Evaluate:
    a) (3233)÷34(3^2 \cdot 3^3) \div 3^4
    b) (23)224(2^3)^2 \cdot 2^{-4}

  3. Without actual calculation, state whether the following are rational or irrational. Justify:

    • a) 49\sqrt{49}

    • b) 27\frac{2}{\sqrt{7}}

    • c) 3+7\sqrt{3} + \sqrt{7}


🔹 Section D: Long Answer Questions (4 marks each)

Explain each step clearly.

  1. Simplify the expression:

(2+3)2(23)2(2 + \sqrt{3})^2 - (2 - \sqrt{3})^2
  1. Rationalise and simplify:

352+25+2\frac{3}{\sqrt{5} - \sqrt{2}} + \frac{2}{\sqrt{5} + \sqrt{2}}
  1. Prove that 2\sqrt{2} is irrational.
    (Use contradiction method)

  2. Evaluate:

(827)2/3\left( \frac{8}{27} \right)^{2/3}

Then use exponent laws to show:

82/3÷24/38^{2/3} \div 2^{4/3}


🔹 Section E: Challenge Question (5 marks)

This tests higher-order thinking.

  1. Rohit says that since π is defined as the ratio of circumference to diameter (C/d), it must be a rational number. Do you agree? Justify with reasoning. Then calculate an approximate value of π using a circle of radius 7 cm (Use π227\pi \approx \frac{22}{7}) and check the accuracy of this approximation.


Instructions for Students:

  • Solve each section step by step.

  • For geometry-related questions, draw figures neatly.

  • Highlight final answers.

  • Use separate sheets if necessary.

Friday, 30 May 2025

EDUNES LANDING PAGE

Edunes Landing

Worksheet: Number System – Mixed Problems

Class 9 Worksheet - Number System

📄 Worksheet: Number System – Mixed Problems

Class: 9 CBSE

Chapter: Number System

Topic: Simplification, Rational/Irrational, Rationalisation, Exponents

Total Marks: 40

Time: 60 Minutes

🔹 Section A: Multiple Choice Questions (1 mark each)

Choose the correct option and write the answer.

1. \( (\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5}) \) equals:
  • 2
  • \( \sqrt{2} \)
  • 12
  • \( \sqrt{35} \)
2. Which of the following is a rational number?
  • \( \sqrt{2} \)
  • \( \frac{1}{\sqrt{3}} \)
  • \( \frac{3}{4} \)
  • \( \pi \)
3. \( (2\sqrt{3})^2 = \)
  • 12
  • 6
  • \( 4\sqrt{3} \)
  • 9
4. \( 16^{3/4} \) is equal to:
  • 4
  • 8
  • 16
  • 2
5. \( \left( \frac{1}{5^2} \right)^{-1} = \)
  • 5
  • 25
  • \( \frac{1}{25} \)
  • -25

🔹 Section B: Very Short Answer (2 marks each)

Answer in one step wherever possible.

  1. Rationalise: \( \frac{1}{\sqrt{3} + 1} \)
  2. Classify as rational or irrational: \( 3 - \sqrt{11} \)
  3. Simplify: \( (5 + \sqrt{2})^2 \)
  4. Represent \( \sqrt{2} \) geometrically on a number line. (Sketch or describe method)
  5. Find:
    • a) \( 27^{1/3} \)
    • b) \( 81^{3/4} \)

🔹 Section C: Short Answer Questions (3 marks each)

  1. Simplify and express in simplest form: \( \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} \)
  2. Evaluate:
    • a) \( (3^2 \cdot 3^3) \div 3^4 \)
    • b) \( (2^3)^2 \cdot 2^{-4} \)
  3. Without actual calculation, state whether the following are rational or irrational. Justify:
    • a) \( \sqrt{49} \)
    • b) \( \frac{2}{\sqrt{7}} \)
    • c) \( \sqrt{3} + \sqrt{7} \)

🔹 Section D: Long Answer Questions (4 marks each)

  1. Simplify the expression:
    \( (2 + \sqrt{3})^2 - (2 - \sqrt{3})^2 \)
  2. Rationalise and simplify:
    \( \frac{3}{\sqrt{5} - \sqrt{2}} + \frac{2}{\sqrt{5} + \sqrt{2}} \)
  3. Prove that \( \sqrt{2} \) is irrational. (Use contradiction method)
  4. Evaluate:
    • \( \left( \frac{8}{27} \right)^{2/3} \)
    • Then use exponent laws to show: \( 8^{2/3} \div 2^{4/3} \)

🔹 Section E: Challenge Question (5 marks)

18. Rohit says that since \( \pi \) is defined as the ratio of circumference to diameter (C/d), it must be a rational number. Do you agree? Justify with reasoning. Then calculate an approximate value of \( \pi \) using a circle of radius 7 cm (Use \( \pi \approx \frac{22}{7} \)) and check the accuracy of this approximation.

✅ Instructions for Students:

  • Solve each section step by step.
  • For geometry-related questions, draw figures neatly.
  • Highlight final answers.
  • Use separate sheets if necessary.

Lecture 6: Simplification, Rational/Irrational Numbers, and Exponents

 This lecture includes simplification of expressions with square roots, classification of numbers, rationalisation of denominators, and laws of exponents.


📘 Lecture 6: Simplification, Rational/Irrational Numbers, and Exponents


🔹 Topic 1: Simplification Involving Square Roots

Let’s begin with examples that show how to simplify algebraic expressions containing square roots.

📍 Example 15: Simplify

  1. (5+7)(2+5)(5 + \sqrt{7})(2 + \sqrt{5})
    Use distributive law (FOIL method):

    =52+55+72+75=10+55+27+35= 5 \cdot 2 + 5 \cdot \sqrt{5} + \sqrt{7} \cdot 2 + \sqrt{7} \cdot \sqrt{5} = 10 + 5\sqrt{5} + 2\sqrt{7} + \sqrt{35}
  2. (5+5)(55)(5 + \sqrt{5})(5 - \sqrt{5})
    Identity: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2

    =255=20= 25 - 5 = 20
  3. (3+7)2(\sqrt{3} + \sqrt{7})^2
    Identity: (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2

    =3+221+7=10+221= 3 + 2\sqrt{21} + 7 = 10 + 2\sqrt{21}
  4. (117)(11+7)(\sqrt{11} - \sqrt{7})(\sqrt{11} + \sqrt{7})
    Identity: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2

    =117=4= 11 - 7 = 4


🔹 Topic 2: Classifying Numbers as Rational or Irrational

A number is irrational if it cannot be expressed as a fraction pq\frac{p}{q}, where p and q are integers and q0q \ne 0.

📍 Classify the following:

  1. 252 - \sqrt{5}Irrational
    (Rational - Irrational = Irrational)

  2. (3+23)23=3(3 + \sqrt{23}) - \sqrt{23} = 3Rational

  3. 2777=27\frac{2\sqrt{7}}{7\sqrt{7}} = \frac{2}{7}Rational

  4. 12\frac{1}{\sqrt{2}}Irrational

  5. 2π2\piIrrational


🔹 Topic 3: Simplifying Square Root Expressions

Use standard identities and combine like terms.

Examples:

  1. (3+3)(2+2)(3 + \sqrt{3})(2 + \sqrt{2})

  2. (3+3)(33)(3 + \sqrt{3})(3 - \sqrt{3})

  3. (5+2)2(\sqrt{5} + \sqrt{2})^2

  4. (52)(5+2)(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})

👉 Use formulas like:

  • (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2

  • (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2


🔹 Topic 4: Think and Discuss

📌 Why is π irrational, even though it's defined as a ratio (C/d)?

  • π is defined as the ratio of circumference to diameter, but it's not a ratio of two integers.

  • So while it appears rational in form, it is not expressible exactly as a fraction.

  • Its decimal form is non-terminating and non-repeating, making it irrational.


🔹 Topic 5: Number Line Representation

📍 Represent 3\sqrt{3} on the number line using geometry (similar to the method in Lecture 5).

  1. Mark 0 and 1 on the number line.

  2. Construct segment 1.5 units from 0, form a right triangle.

  3. Use Pythagoras’ Theorem to locate 3\sqrt{3}.


🔹 Topic 6: Rationalising the Denominator

To rationalise means to eliminate the square root from the denominator.

Examples:

  1. 17=77\frac{1}{\sqrt{7}} = \frac{\sqrt{7}}{7}

  2. 176=7+676=7+6\frac{1}{\sqrt{7} - \sqrt{6}} = \frac{\sqrt{7} + \sqrt{6}}{7 - 6} = \sqrt{7} + \sqrt{6}

  3. 15+2=523\frac{1}{\sqrt{5} + \sqrt{2}} = \frac{\sqrt{5} - \sqrt{2}}{3}

  4. 172=Multiply numerator and denominator by 7+2\frac{1}{\sqrt{7} - 2} = \text{Multiply numerator and denominator by } \sqrt{7} + 2


🔹 Topic 7: Laws of Exponents

Let a0a \ne 0, and m, n are integers.

  1. aman=am+na^m \cdot a^n = a^{m+n}

  2. (am)n=amn(a^m)^n = a^{mn}

  3. aman=amn\frac{a^m}{a^n} = a^{m-n}

  4. ambm=(ab)ma^m \cdot b^m = (ab)^m


🔹 Exercise Practice (from Ex 1.5)

1. Find:

  • 6423=(43)2/3=42=1664^{\frac{2}{3}} = (4^3)^{2/3} = 4^2 = 16

  • 3235=(25)3/5=23=832^{\frac{3}{5}} = (2^5)^{3/5} = 2^3 = 8

2. Simplify powers using laws of exponents:

  • 2325=282^3 \cdot 2^5 = 2^8

  • (137)1=37\left( \frac{1}{3^7} \right)^{-1} = 3^7

  • 111211141134=11(1/2+1/43/4)=110=1\frac{11^{\frac{1}{2}} \cdot 11^{\frac{1}{4}}}{11^{\frac{3}{4}}} = 11^{(1/2 + 1/4 - 3/4)} = 11^0 = 1


📝 Homework

  1. Rationalise: 13+2\frac{1}{\sqrt{3} + \sqrt{2}}

  2. Classify: 49+π\sqrt{49} + \pi

  3. Simplify: (3+1)2(\sqrt{3} + 1)^2

  4. Prove: 2\sqrt{2} is irrational.



Lecture 5: Geometrical Representation of Square Roots



📘 Lecture 5: Geometrical Representation of Square Roots & Properties of Square Roots


🔹 Topic 1: What does √a mean?

For any real number a>0a > 0,
a=b means b2=a and b>0\sqrt{a} = b \text{ means } b^2 = a \text{ and } b > 0

This definition works for both:

  • Natural numbers (e.g., √4 = 2, because 2² = 4)

  • Real numbers (e.g., √3.5)


🔹 Topic 2: How to Represent √x Geometrically?

We now explore how to construct x\sqrt{x} geometrically when xx is a positive real number.


📐 Example: Constructing √3.5 geometrically


Refer to Fig. 1.11

Steps:

  1. Draw a line segment AB = 3.5 units on a number line.

  2. From point B, mark 1 unit to the right. Let that point be C.

  3. Find midpoint of AC, mark it as O.

  4. Draw a semicircle with center O and radius OC.

  5. Draw a perpendicular line from point B to the semicircle. Let it intersect at point D.

  6. Then, BD = √3.5

✅ This gives a geometric way to represent square root of 3.5.


📐 General Case: Represent √x geometrically

Refer to Fig. 1.12

Steps for any real number x>0x > 0:

  1. Mark AB = x units.

  2. From B, mark 1 unit to the right, name the point as C.

  3. Find the midpoint O of AC.

  4. Draw a semicircle with diameter AC.

  5. Draw a perpendicular from B to the semicircle and mark intersection point as D.

  6. Then, BD = √x


🧠 Proof using Pythagoras Theorem

In △OBD, ∠OBD = 90°, so it’s a right triangle.

Let’s calculate:

  • Radius of semicircle =
    OC=x+12OC = \frac{x + 1}{2}

  • OB =
    xx+12=x12x - \frac{x + 1}{2} = \frac{x - 1}{2}

Using Pythagoras:

BD2=OD2OB2=(x+12)2(x12)2=(x+1)2(x1)24=4x4=xBD^2 = OD^2 - OB^2 = \left( \frac{x+1}{2} \right)^2 - \left( \frac{x-1}{2} \right)^2 = \frac{(x+1)^2 - (x-1)^2}{4} = \frac{4x}{4} = x

Thus,

BD=xBD = \sqrt{x}


📘 Topic 3: Properties of Square Roots

Let a,b>0a, b > 0 be real numbers.

  1. ab=ab\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}

  2. ab=ab\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}

  3. (a+b)(ab)=ab(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b

  4. (a+b)(ab)=a2b(a + \sqrt{b})(a - \sqrt{b}) = a^2 - b

  5. (a+b)(c+d)=ac+ad+bc+bd(\sqrt{a} + \sqrt{b})(\sqrt{c} + \sqrt{d}) = \sqrt{ac} + \sqrt{ad} + \sqrt{bc} + \sqrt{bd}

  6. (a+b)2=a+2ab+b(\sqrt{a} + \sqrt{b})^2 = a + 2\sqrt{ab} + b


📚 Exercise for Practice

  1. Geometrically construct 2.5\sqrt{2.5} using the method described.

  2. Prove that (5+3)2=5+215+3(\sqrt{5} + \sqrt{3})^2 = 5 + 2\sqrt{15} + 3

  3. Use Pythagoras Theorem to verify that your geometric construction is correct.

  4. Show that 82=16\sqrt{8} \cdot \sqrt{2} = \sqrt{16}


📌 Key Takeaway

We can visualize square roots of real numbers on a number line using semicircles and perpendicular lines, and use algebraic identities to simplify square root expressions.



Lecture 4: Converting Recurring Decimals to Rational Numbers



📘 Class 9 – CBSE Mathematics


Chapter 1: Number System

Lecture 4: Converting Recurring Decimals to Rational Numbers + Exercise 1.3


🔹 Examples: Converting Recurring Decimals to Rational Numbers


Example 7

Convert: 0.3333=0.30.3333\ldots = 0.\overline{3}

Let x=0.3333x = 0.3333\ldots

Multiply both sides by 10:

10x=3.333310x = 3.3333\ldots

Now subtract:

10xx=3.33330.3333=39x=3x=1310x - x = 3.3333\ldots - 0.3333\ldots = 3 \Rightarrow 9x = 3 \Rightarrow x = \frac{1}{3}


Example 8

Convert: 1.272727=1.271.272727\ldots = 1.\overline{27}

Let x=1.272727x = 1.272727\ldots

Multiply both sides by 100 (since 2 digits repeat):

100x=127.272727100x = 127.272727\ldots

Now subtract:

100xx=127.27271.2727=12699x=126x=12699=1411100x - x = 127.2727\ldots - 1.2727\ldots = 126 \Rightarrow 99x = 126 \Rightarrow x = \frac{126}{99} = \frac{14}{11}


Example 9

Convert: 0.2353535=0.2350.2353535\ldots = 0.2\overline{35}

Let x=0.2353535x = 0.2353535\ldots

Multiply by 100:

100x=23.535353100x = 23.535353\ldots

Now subtract:

100xx=23.53530.2353=23.399x=23.3=23310x=233990100x - x = 23.5353\ldots - 0.2353\ldots = 23.3 \Rightarrow 99x = 23.3 = \frac{233}{10} \Rightarrow x = \frac{233}{990}


📝 Exercise 1.3 – Solved


Q1. Convert to decimal form and classify the decimal expansion

Fraction Decimal Type
(i) 36/100 0.36 Terminating
(ii) 1/11 0.\overline{09} Non-terminating recurring
(iii) 4/8 0.5 Terminating
(iv) 3/13 0.\overline{230769} Non-terminating recurring
(v) 2/11 0.\overline{18} Non-terminating recurring
(vi) 329/400 0.8225 Terminating


Q2. Predict the decimal expansions:

Given:
17=0.142857\frac{1}{7} = 0.\overline{142857}

Use cyclic patterns:

  • 27=0.285714\frac{2}{7} = 0.\overline{285714}

  • 37=0.428571\frac{3}{7} = 0.\overline{428571}

  • 47=0.571428\frac{4}{7} = 0.\overline{571428}

  • 57=0.714285\frac{5}{7} = 0.\overline{714285}

  • 67=0.857142\frac{6}{7} = 0.\overline{857142}

📌 These are cyclic permutations of the digits in 17\frac{1}{7}.


Q3. Express in the form pq\frac{p}{q}:

(i) 0.6=610=350.6 = \frac{6}{10} = \frac{3}{5}
(ii) 0.47=471000.47 = \frac{47}{100}
(iii) 0.001=110000.001 = \frac{1}{1000}


Q4. Express 0.999990.99999\ldots in the form pq\frac{p}{q}

Let x=0.99999x = 0.99999\ldots
Then 10x=9.9999910x = 9.99999\ldots
Subtract: 10xx=99x=9x=110x - x = 9 \Rightarrow 9x = 9 \Rightarrow x = 1

✅ So, 0.99999=10.99999\ldots = 1


Q5. Repeating block length in 17\frac{1}{7}

Do long division:
17=0.142857\frac{1}{7} = 0.\overline{142857}

🔹 Number of digits in the repeating block = 6


Q6. Property of q for rational number pq\frac{p}{q} to be terminating

Decimal of pq\frac{p}{q} terminates iff q (in lowest terms) has no prime factor other than 2 or 5.

✅ Example:

  • 18=0.125\frac{1}{8} = 0.125: q = 8 = 232^3

  • 16=0.16666...\frac{1}{6} = 0.16666...: q = 6 = 2×32 \times 3 → Not terminating


Q7. Three numbers with non-terminating, non-recurring decimals:

  • π = 3.1415926535...

  • √2 = 1.41421356...

  • e = 2.718281828...


Q8. Three irrational numbers between 57\frac{5}{7} and 911\frac{9}{11}:

Convert bounds to decimal:

  • 570.714\frac{5}{7} ≈ 0.714

  • 9110.818\frac{9}{11} ≈ 0.818

Now pick irrational numbers in between:

  • 0.718281828... (e/4)

  • 0.75√2

  • 0.8π/3


Q9. Classify as rational or irrational

Number Type
(i) 23\sqrt{23} Irrational
(ii) 225=15\sqrt{225} = 15 Rational
(iii) 0.3796 Rational
(iv) 7.478478... Rational
(v) 1.10100100010000... Irrational


Would you like me to create a printable worksheet and answer key for this exercise?

Lecture 3: Real Numbers and Their Decimal Expansions

 .


📘 Class 9 – CBSE Mathematics

Chapter 1: Number System

Lecture 3: Real Numbers and Their Decimal Expansions


🔹 Decimal Expansions of Rational Numbers

When we divide a rational number pq\frac{p}{q} (with p,qZ,q0p, q \in \mathbb{Z}, q \ne 0), its decimal expansion can be of two types:


🔸 Case I: Terminating Decimal Expansion

  • If, during division, the remainder becomes zero after a certain number of steps, the decimal expansion stops or ends.

  • Such decimals are called terminating decimals.

✅ Examples:

  • 78=0.875\frac{7}{8} = 0.875

  • 12=0.5\frac{1}{2} = 0.5

  • 639250=2.556\frac{639}{250} = 2.556

Observation: The division process ends after a finite number of steps.


🔸 Case II: Non-Terminating Recurring Decimal Expansion

  • If the remainder never becomes zero and starts repeating after a certain point, then the decimal goes on forever but with a repeating pattern.

  • These are called non-terminating recurring (repeating) decimals.

✅ Examples:

  • 103=3.333...=3.3\frac{10}{3} = 3.333... = 3.\overline{3}

  • 17=0.142857142857...=0.142857\frac{1}{7} = 0.142857142857... = 0.\overline{142857}

  • 3.5727272...=3.57273.5727272... = 3.57\overline{27}

Note: The bar 0\overline{\phantom{0}} indicates the digits that repeat.


🔹 Important Observations from Examples

  1. The remainders either:

    • Become zero (Terminating)

    • Or start repeating (Non-Terminating Recurring)

  2. In repeating cases, the number of distinct remainders before repetition is less than the divisor.

    • Example: 103\frac{10}{3} → Divisor is 3 → Only 1 digit (3) repeats

    • Example: 17\frac{1}{7} → Divisor is 7 → 6 digits (142857) repeat

  3. The decimal expansions of rational numbers are either terminating or non-terminating recurring.


🔹 Conclusion

If a number:

  • Terminates (e.g., 3.25), or

  • Repeats (e.g., 1.272727...)

Then it is a rational number.

So,

  • Decimal expansions help us identify rational numbers.

  • All rational numbers will either terminate or have repeating decimals.

  • If a number has a non-terminating non-repeating decimal (like π or 2\sqrt{2}), it is irrational.