Sunday, 15 September 2013

STRATIFIED CHARGE INTERNAL COMBUSTION ENGINE

Google Patent wrote on the page as Abstract ideas about stratified charge engine. Google Patent
An internal combustion engine is disclosed having a cylinder and a reciprocating piston which, together with the cylinder head, define the boundaries of a combustion chamber.
A movable septum is supported by the cylinder head adjacent the combustion chamber for selectively dividing the combustion chamber into a first and second combustion chamber. The movable septum may be formed by a cylindrical plate or by a flat or curved plate which makes nominal contact with the walls of the cylinder and the face of the reciprocating piston to divide the combustion chamber.
The fuel supply system provides a rich-fuel mixture through a rich mixture intake valve to the first combustion chamber, and a lean-fuel mixture through a lean mixture intake valve to the second combustion chamber.
The movable septum tracks the movement of the reciprocating piston during the compression stroke to maintain the division between the first and second combustion chambers. However, just prior to the power stroke, the actuator retracts the movable septum from the combustion chamber, and the spark plug ignites the rich air-fuel mixture which then ignites the lean air-fuel mixture to complete the power stroke. During the exhaust stroke of the reciprocating piston, the movable septum is maintained in a retracted position. As a result, effective stratification is achieved between the first and second combustion chambers.
Lecture Note:

STRATIFIED CHARGE ENGINE

Internal combustion engines or popularly known as IC Engines are life line of human society which mostly served as a mobile, portable energy generator and extensively used in the transportation around the world.
There are many types of IC Engines, but among them two types known as petrol or SI engines and diesel or CI engines are well established. Most of the automotive vehicles run on either of the engines. Despite their wide popularity and extensive uses, they are not fault free. Both SI Engines and CI Engines have their own demerits and limitations.
Limitations of SI Engines (Petrol Engines)
Although petrol engines have very good full load power characteristics, but they show very poor performances when run on part load. Petrol engines have high degree of air utilisation and high speed and flexibility but they can not be used for high compression ratio due to knocking and detonation. Limitations of CI or Diesel Engines: On the other hand, Diesel engines show very good part load characteristics but very poor air utilisation, and produces unburnt particulate matters in their exhaust. They also show low smoke limited power and higher weight to power ratio. The use of very high compression ratio for better starting and good combustion a wide range of engine operation is one of the most important compulsion in diesel engines. High compression ratio creates additional problems of high maintenance cost and high losses in diesel engine operation. For an automotive engine both part load efficiency and power at full load are very important issues as 90% of their operating cycle, the engines work under part load conditions and maximum power output at full load controls the speed, acceleration and other vital characteristics of the vehicle performance. Both the Petrol and Diesel engines fail to meet the both of the requirements as petrol engines show good efficiency at full load but very poor at part load conditions, where as diesel engines show remarkable performance at part load but fail to achieve good efficiency at full load conditions. Therefore, there is a need to develop an engine which can combines the advantages of both petrol and diesel engines and at the same time avoids their disadvantages as far as possible.
Working Procedures:
Stratified charged engine is an attempt in this direction. It is an engine which is at mid way between the homogeneous charge SI engines and heterogeneous charge CI engines. Charge Stratification means providing different fuel-air mixture strengths at various places inside the combustion chamber. It provides a relatively rich mixture at and in the vicinity of spark plug, where as a leaner mixture in the rest of the combustion chamber. Hence, we can say that fuel-air mixture in a stratified charge engine is distributed in layers or stratas of different mixture strengths across the combustion chamber and burns overall a leaner fuel-air mixture although it provides a rich fuel-air mixture at and around spark plug.

No comments: